### COSMOLOGY: AST 625

Instructor: Dr. Anatoly Klypin

Lecture times: Tuesdays & Thursdays, 1:10 – 2:25

Office hours: Tuesdays 3:00 - 3:30

Textbook: J. Peacock "Cosmological Physics"

Lecture Notes: every student will have a copy of my notes

Homework: every other week you will have 4-5 problems to solve at home.

Homework assignments are due a week after they are given to you.

Grades:

Homework 20% Two Midterms 20% Project 20%

Final Exam 20%

# **Project**

For given parameters of a cosmological model ( $\Omega_{\text{total}}$ ,  $\Omega_{\text{dm}}$ ,  $\Omega_{\nu}$ ,  $\Omega_{\Lambda}$ ,  $H_0$ , P(k),  $\sigma_8$ ) find:

(1) Age of the Universe at different redshifts (z = 0 - 5)

- (3) Amplitude of fluctuations  $\Delta M/M$  on galactic scales  $M=10^{10},10^{11},10^{12}$  at redshifts 0-10.
- (4) Power spectrum of fluctuations for galaxies in real space (assuming a linear bias). Compare results with observational data
- (5) Fraction of mass of the Universe in galaxies at different redshifts.
- (6) Bulk velocity of a sphere of radius R.
- (7) Number density of halos with different mass at different redshifts.

#### **Tentative Course Schedule**

- 1) Introduction. Keystone observations. Matter, luminosity, age. Short history of time. Kinematic properties of the Friedman universe.
- 2) Kinematic properties of the Friedman universe. Metric, geometry of open, flat, closed world.
- 3) Friedman equations: simple derivation. Corrections for GR effects. Expansion laws, age of the Universe in different model.
  - 4) Different modes. Waves longer than the distance to the horizon.
  - 5) Equations of hydrodynamics in comoving coordinates. Small waves. Velocities.
  - 6) Different solutions for small waves. Jeans instability.
  - 7) Silk dumping. Free streaming.
  - 8) Transfer functions. Power spectrum.

### MIDTERM EXAM

- 9) Statistical description of small fluctuations. Filters. Correlation function.
- 10) Measurements of the correlation function and power spectrum.
- 11) Introduction. Galaxies, clusters, filaments, and voids at different redshifts.
- 12) Spherical model. Homogeneous ellipsoid model.
- 14) Zeldovich approximation. Truncated Zeldovich approximation.
- 13) Mass functions: the Press-Schechter approximation.
- 15) Nonlinear evolution of fluctuations. Biases.

### MIDTERM EXAM

- 16) Inflation I. Ideas. Different models of inflation.
- 17) Inflation II. Slow-roll approximation. Reheating. Origin of fluctuations.
- 18) Thermal history of the Universe. Entropy. "Freeze out". Neutrinos and WIMPS. BBN -I
  - 19) BBN-II. Decoupling and recombination.
  - 20) Cosmic Microwave Background anisotropies: physical processes.
  - 21) Statistics of CMB anisotropies. Observations.
  - 22) Cosmological models: predictions and observations.

# FINAL EXAM