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ABSTRACT
Cosmological N -body simulations play an important role in modern cosmology by
providing vital information regarding the evolution of the dark matter: its clustering
and motion, about properties of dark matter halos. The simulations are instrumental
for the transition of the theoretical cosmology from an inspiring but speculative part
of astronomy to the modern precision cosmology. In spite of more than 50 years of
development, N -body methods are still a thriving field with invention of more powerful
methods providing more accurate theoretical predictions. Here we review different
numerical methods (PM, TREE, AMR) and ideas used in the field. Results for the
evolution of the dark matter distribution function and power spectrum are briefly
introduced.

1 INTRODUCTION

Dark matter is an important component of the Universe.
All observational evidence indicates that it dominates dy-
namics of normal and dwarf galaxies, clusters and groups of
galaxies. At high redshifts it provided the force that drove
the formation of first galaxies and quasars. The observed
large filaments and giant voids all can be understood and
explained if we combine the dynamics of the dark matter
with the predictions of the inflation model on the spectrum
of primordial fluctuations.

The dark matter is likely made of particles that other
than the gravity force do not couple with the other matter
(such as normal gas, which for some reason in cosmology
is called “baryons”. Leptons, do not take an offense - you
do not weigh much here). There may be some channel of
interactions between dark matter particles resulting in an-
nihilation and production of normal particles. However, even
if present (no observational evidence so far), this channel is
weak and the dark matter is (mostly) preserved over the
evolution of the Universe.

How this dark matter evolves and how it forms different
structures and objects was an active field of research for a
very long time. The first (somewhat) realistic N-body simu-
lation – collapse of a cloud of 300 self-interacting particles –
was done by P.J.E. Peebles Peebles (1970). Remember that
at that time of the dawn of cosmology, there was no dark
matter, the hot gas x-ray gas in clusters had not been yet
discovered (it was discovered in 1971), there were no voids
or superclusters. So the first N-body simulation had indi-
cated that the force of gravity alone may be responsible for
the formation of clusters of galaxies, which was a big step
forward. It also discovered a problem – the density profile
in the model was not right: too steep. The solution for this
problem was continuous mass accretion on the forming clus-
ter instead of a one-time event of collapse (Gunn & Gott
1972).

With the development of computer hardware and new
numerical algorithms N-body simulations became more real-
istic. Klypin & Shandarin Klypin & Shandarin (1983) made
the first 3D Particle-Mesh (PM) simulation with 32,768 par-
ticles and realistic initial conditions (nearly the same tech-
nique as used at present). The model demonstrated that
the large scale structure of the Universe should be a net
of clusters of galaxies connected with filaments. The model
even got a name “the chicken Universe” from one of the
plots in the paper, which looked like a chicken. Davies et
al. Davis et al. (1985) used Particle-Particle-Particle-Mesh
(P3M) code developed by Hockney & Eastwood to run
323 particles with high (at that time) resolution to show
that galaxies (“light”) should not follow the dark matter
(“mass”). That was a very important idea. In their own
words: “... kind of bias to be expected if bright galaxies
form only at relatively high peaks of the linear density dis-
tribution”.

From that moment the simulations took off. Larger and
larger numbers of particles were used as new codes and new
computers became available. For some time it looked almost
like a sport: whose simulation has more “muscle”. The pace
has slowed down in recent years mostly because it became
more difficult to analyze the simulations and to make the
results accessible to the larger community.

Development of numerical methods was crucial for ad-
vances in N-body simulations. At the beginning direct sum-
mation technique was used to run the simulations (Peebles
1970; White 1976; Aarseth et al. 1979). At that time – slower
processors, no parallel computing – it was difficult to make
simulations with more than just a few thousand particles.
The main motivation at that time was to develop new com-
putational methods. The number of operations in the direct
summation method scales as ∝ N2, where N is the num-
ber of particles. So, one quickly ran out of available cpu.
However, now the situation is different: processors are much
faster and the number of cores on a workstation can be sig-
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nificant. A simulation with N = 105 − 106 is relatively fast
(from few hours to few days). Such simulations can be very
useful for testing different ideas and for small runs. It is also
very easy to modify the code because everything is very
transparent. For example, one can add external tidal force
or modify the law of gravity. It is also a great tool for train-
ing students: a simple parallel pair-wise summation code can
be written in few hours.

Particle-Mesh method (Klypin & Shandarin 1983;
Hockney & Eastwood 1988; Klypin & Holtzman 1997) was
a big step forward with cpu scaling ∝ N . However, it re-
quires a large 3D mesh for computation of the gravitational
potential. The size of a cell in that mesh defines the force
resolution, and, if one needs better resolution, the number
of cells should be increased. As the result, one may run out
of available computer memory. Still, the PM method is very
fast and is easy to implement. It is a part of all more sophis-
ticated and fast codes.

Hybrid codes Particle-Particle-Particle-Mesh (P3M)
(Efstathiou et al. 1985; Hockney & Eastwood 1988) and
Adaptive P3M (Couchman 1991) were popular for some
time, but they were superceded by either Adaptive Mesh Re-
finement codes (Kravtsov et al. 1997; Teyssier 2002; Bryan
et al. 1995, 2014) or by TREE codes (Appel 1985; Barnes
& Hut 1986; Stadel 2001; Salmon & Warren 1994; Springel
et al. 2001). Older review of N-bodymethods can be found
in Dolag et al. (2008).

2 COSMOLOGICAL N-BODY PROBLEM:
MAIN EQUATIONS

In order to derive equations for the cosmological N-body
problem, one can start with the equations of general rel-
ativity and derive equations of motion of self-gravitating
nonrelativistic particles in the expanding Universe. For the
case of nonrelativistic matter and the weak-field limit, we
simply arrive at the Newtonian equations. There are some
limitations with this approach: we cannot treat relativistic
particles and we neglect time needed for gravitational per-
turbations to travel from one point to another effectively
treating changes in the gravitational potential as instanta-
neous. However, these effects are not significant for most
applications: velocities are typically well below relativistic
and effects of the finite time of gravitational perturbations
are small.

We start with definitions. Proper r and comoving coor-
dinates x are related:

r(x, t) = a(t)x(t), (1)

where a(t) is the expansion factor. Differentiating eq.(1) over
time, we get velocities:

v(x, t) ≡ ṙ = aẋ + ȧx = Hr + vpec. (2)

Here vpec = aẋ is the peculiar velocity and H = ȧ/a is the
Hubble constant. It is also useful to introduce the specific
momentum defined as p ≡ a2ẋ = avpec.

In cosmology we deal with a rather specific case of the
N-body problem. Here discreteness of matter can be ne-
glected. In general this is not the case with the two-body
effects gradually accumulating over time. Systems studied
in cosmology such as the nonlinear evolution of dark matter

clustering do not suffer from the two-body scattering and
can be treated using the collisionless Boltzmann equation
paired with the Poisson equation for the gravitational po-
tential. In the comoving coordinates the Boltzmann equa-
tion describing the evolution of the distribution function
f(x,p, t) can be written as:

∂f

∂t
+ x

∂f

∂x
−∇φ

∂f

∂p
= 0, (3)

where peculiar gravitational potential φ(x) is related with
the normal gravitational potential Φ as Φ = 2πGρbr

2/3 + φ
where the first term is the potential of the background (con-
stant over space) density field ρb and the second term is the
deviation from the background. Changing coordinates from
proper r to comoving x we can write the Poisson equation
as:

∇2φ = 4πGa2(ρ(x) − ρb) = 4πG
Ω0ρcr,0

a
δdm(x, t). (4)

Here δdm ≡ (ρdm(x, t) − 〈ρdm〉)/〈ρdm〉 is the dark matter
density contrast. Factors Ω0 and ρcr,0 are the average matter
(dark matter plus baryons) density in the units of the criti-
cal density and the critical density all taken at the present
moment a = 1.

Note that the right hand side (r.h.s) of eq.(4) may have
a positive or negative sign. This is unusual considering that
in a normal Poisson equation the density is always positive.
The negative sign of the density term in eq.(4) happens in
locations where the density is below the average density of
the Universe. While there are no real negative densities in
the Poisson equation, the regions with the negative r.h.s.
of eq.(4) in comoving coordinates act as if there are. For
example, in these regions the peculiar gravitational acceler-
ation points away from the center of an underdense region
resulting in matter being pushed away from the center. This
explains why over time voids (large underdense regions) ob-
served in the large-scale distribution of the dark matter be-
come bigger and more spherical.

The collisionless Boltzmann equation eq.(3) is a linear
first order partial differential equation in the 7-dimensional
space (x,p, t). It has a formal solution in the form of char-
acteristics: a set of curves that cover the whole space. The
characteristics do not intersect and do not touch each other.
Along each characteristic the value of the distribution func-
tion is preserved. In other words, if at some initial moment ti

we have coordinate xi, momentum pi, and phase-space den-
sity fi, then at any later moment t along the characteristic
we have f(x,p, t) = fi(xi,pi, ti). Equations of the charac-
teristics, the Poisson equation, and the Friedmann equation
can be written as follows:

dx

da
=

p

a3H
,

dp

da
= −∇φ

aH
, (5)

∇2φ =
3

2

H2
0Ω0δdm

a
, (6)

H2 = H2
0

„

Ω0

a3
+ ΩΛ,0

«

, Ω0 + ΩΛ,0 = 1. (7)

Here we specifically assumed a flat cosmological model with
the cosmological constant characterized by the density pa-
rameter ΩΛ,0 at redshift z = 0.
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There are numerical factors in eqs.(5–6) that obscure
the fact that the equations of characteristics are nothing
but the equations of motion of particles under the force of
gravity. These equations are almost the equations of the N-
body problem in the comoving coordinates. However, there
are differences. Characteristics cover the whole phase-space
which we cannot do in simulations that use a finite num-
ber of particles. Instead, we approximate the phase-space
by placing particles at some positions and giving them ini-
tial momenta.

How exactly we place the particles depends on the prob-
lem to be solved. For example, if a large simulation volume is
expected to be resolved everywhere with the same accuracy,
then particles should be nearly homogeneously distributed
initially and have the same mass. If instead a small region
should be resolved with a higher resolution than its environ-
ment, than we place lots of small particles in the region and
cover the rest of the volume with few large particles.

Because we intend to produce an approximate solution
for the continuous distribution of matter in space as de-
scribed by the Boltzmann-Poisson equations, we may not
even think that we solve the N-body problem – an ensemble
of point masses moving under the force of gravity. For exam-
ple, at the initial moment the volume of a simulation may be
covered by many small non-overlapping cubes (not points).
Then each cube is treated as a massive particle with some
size, mass, and momentum. So, instead of N point masses
we have N small cubes. This is definitely a better approxi-
mation for the reality. Indeed, these types of approximations
are used in many simulations. For example, in Particle-Mesh
(PM) simulations dark matter particles are small cubes with
constant density and size. In Adaptive Mesh Refinement
(AMR) codes particles are also cubes with the size of the
cube decreasing in regions with better force resolution.

The last clarification is related to the baryons. In order
to treat the baryons properly, we need to include equations
of hydrodynamics and add gas density to the Poisson equa-
tion. We clearly do not do it in N-body simulations. Still, we
cannot ignore baryons. They constitute a significant fraction
of mass in the Universe. If we neglect baryons, there will be
numerous defects. For example, the growth rate of fluctua-
tions even on large scales will be wrong and virial masses
will not be correct. In cosmological N-body simulations we
assume that all the mass – dark matter and baryons – is
in particles and each particle represents both dark matter
and baryons with the ratio of the two being equal to the
cosmological average ratio.

3 SIMPLE N-BODY PROBLEM: PAIR-WISE
SUMMATION

We start discussion of numerical techniques with a very
simple case: forces are estimated by summing up all con-
tributions from all particles and with every particle moving
with the same time-step. The computational cost is domi-
nated by the force calculations that scale as N2, where N
is the number of particles in the simulation. Because of the
steep scaling, the computational cost of a simulation starts
to be prohibitively too large for N & 106. However, simu-
lations with a few hundred thousand particles are fast, and
there are numerous interesting cases that can be addressed

with N < 106 particles. Examples include major-mergers of
dark matter halos, collisions of two elliptical galaxies, and
tidal stripping and destruction of a dwarf spheroidal satel-
lite galaxy moving in the potential of the Milky Way galaxy.
In these cases it is convenient to use proper, not comoving
coordinates.

The problem that we try to solve numerically is the
following. For given coordinates rinit and velocities vinit of
N massive particles at moment t = tinit find their velocities
v and coordinates r at the next moment t = tnext assuming
that the particles interact only through the Newtonian force
of gravity. If ri and mi are the coordinates and masses of
the particles, then the equations of motion are:

d2ri
dt2

= −G

N
X

j=1,i6=j

mj(ri − rj)

|ri − rj|3
, (8)

where G is the gravitational constant. Two steps should be
taken before we start solving equations (8) numerically.

First, we introduce force softening: we make the force
weaker (“softer”) at small distances to avoid very large ac-
celerations, when two particles collide or come very close to
each other. This makes numerical integration schemes sta-
ble. Another reason for softening the force at small distances
is that in cosmological environments, when one deals with
galaxies, clusters of galaxies, or the large-scale structure, ef-
fects of close collisions between individual particles are very
small and can be neglected. In other words, the force acting
on a particle is dominated by the cumulative contribution
of all particles, not by a few close individual companions.

There are different ways of introducing the force soft-
ening. For mesh-based codes, the softening is defined by the
size of cell elements. For TREE codes the softening is in-
troduced by assuming a particular kernel, and it is different
for different implementations. The simplest and often used
method is called the Plummer softening. It replaces the dis-
tance between particles ∆rij = |ri − rj| in eq. (8) with the
expression (∆r2

ij+ǫ2)1/2, where ǫ is the softening parameter.
Second, we need to introduce new variables to avoid

dealing with too large or too small physical units of a real
problem. This can be done in a number of ways. For mesh-
based codes, the size of the largest resolution element and
the Hubble velocity across the element give scales of dis-
tance and velocity. Here we use more traditional scalings.
Suppose M and R are scales of mass and distances. These
can be defined by a particular physical problem. For ex-
ample, for simulations of an isolated galaxy M and R can
be the total mass and the initial radius. It really does not
matter what M and R are. The scale of time t0 is chosen
as t0 = (GM/R3)−1/2. Using M , R, and t0 we can change
the physical variables ri, vi, mi into dimensionless variables
using the following relations:

ri = r̃i R, vi = ṽi

R

t0
, mi = m̃i M, t = t̃ t0. (9)

We now change the variables in eq. (8) and use the Plummer
softening:

g̃i = −
N
X

j=1

m̃j(r̃i − r̃j)
`

∆r̃2
ij + ǫ̃2

´3/2
,

dṽi

dt̃
= g̃i,

dr̃i

dt̃
= ṽi,

(10)
where g̃i is the the dimensionless gravitational acceleration.

c© 0000 RAS, MNRAS 000, 000–000



4 A. Klypin

Note that these equations look exactly as eq. (8), if we for-
mally set G = 1 and ǫ = 0.

All numerical algorithms for solving these equations in-
clude three steps, which are repeated many times:

• find acceleration g(r)
• update velocity v = v + ∆v(g)
• update coordinates r = r + ∆r(v)

Here is a simple fragment of a Fortran-90 code that does
it using direct summation of accelerations:

Program Simple

.... (set parameters)

.... (read data)

Do ! Main loop of integration

Call Acceleration ! find accelerations

v = v+g*dt ! update velocities

X = X+v*dt ! update coordinates

t = t +dt ! update time

If(t> t_end)exit ! stop when time is up

End do

end Program Simple

Subroutine Acceleration ! find accelerations

g = 0. ! set accelerations to zero

Do i=1,N ! for each particle i

Do j=1,N ! add contributions

g(:,i)=g(:,i)+m(j)*(X(:,j)-X(:,i))/ &

sqrt(SUM((X(:,j)-X(:,i))**2+eps2)**3)

EndDo

EndDo

end Subroutine Acceleration

In this code we extensively use Fortran-90 feature of vec-
tor operations. For example, the statement V = V + g × dt
means “do it for every element” of arrays V (i, j) and g(i, j).
There are simple ways of speeding up the code. Particles can
be assigned into groups according to their accelerations with
each group having their own time step. In this case particles
with large accelerations update their coordinates and accel-
erations more often while particles in low density (and ac-
celeration) regions move with large time step, thus reducing
the cost of their treatment. Calculations of the acceleration
can be easily parallelized using OpenMp directives. These
optimizations can speed up the code by hundreds of times
making it a useful tool for simple simulations.

4 MOVING PARTICLES: TIME-STEPPING
ALGORITHMS

Numerical integration of equations of motion are relatively
simple as compared with the other part of the N-body prob-
lem – the force calculations. Still, a wrong choice of param-
eters or an integrator can make a substantial impact on the
accuracy of the final solution and on cpu time. To make ar-
guments more transparent, we write equations of motion in
proper coordinates and assume that the gravitational accel-
eration can be estimated for every particle. In this case the
equations of motion for each particle are simply:

dv(t)

dt
= g(x),

dx(t)

dt
= v(t). (11)

Along particle trajectory acceleration can be considered as
a function of time g(x(t)). If we know coordinates x0 and
velocities v0 at some initial moment t0, then eqs. (11) can
be integrated from t = t0 to t1 = t0 + dt:

x1 = x0 +

Z t1

t0

v(t)dt, v1 = v0 +

Z t1

t0

g(t)dt. (12)

We now expand v(t) and g(t) in the Taylor series around
t0 and substitute those into eqs. (12) to obtain different
approximations for x1 and v1. If we keep only the first two
terms, we get the first order Euler approximation: x1 =
x0 + v0dt + ǫ, where ǫ ≈ g0dt2/2 ∝ O(dt2) and v1 = v0 +
g0dt+ǫ, ǫ ∝ O(dt2). Accuracy and convergence of the Euler
integrator are low, and it is never used for real simulations.
One may think that adding g0dt2/2 term to displacements
may increase the accuracy, but it really does not because
velocities are still of the first order. In the next iteration the
first-order velocity makes the displacement also of the first
order. However, we may dramatically improve the accuracy
by re-arranging terms in the Taylor expansion in order to
kill some high order terms.

Suppose initial velocity is given not at the moment t0,
but a half timestep earlier at t−1/2 = t0 − dt/2. Using coor-
dinates at t0 we find acceleration g0(t0). We now advance
velocity one step forward from t−1/2 to t1/2 = t−1/2 + dt.
Note that when we do it, we use acceleration at the middle
of the time step, not on the left boundary of the time step
as in the Euler integrator. We then advance coordinates to
moment t1 = t0 + dt using the new value of velocity. As the
result, the scheme of integration is:

v1/2 = v−1/2 + g0dt, x1 = x0 + v1/2dt. (13)

In order to find the accuracy of this approximation, we first
eliminate velocities from eqs. (13): x1 − 2x0 + x−1 = g0dt.
There is an error in this integrator, which we can find by
using the Taylor expansion for x±1 up to the fourth order
term. This gives:

x1 − 2x0 + x−1 = g0dt + ǫ, (14)

where the error of the approximation is

ǫ =
1

12

d2g

dt2
dt4. (15)

Here the second time derivative of the acceleration is esti-
mated at t = t0. This is a dramatic improvement as com-
pared with the Euler integrator: the error is proportional to
dt4 and, as a bonus, there is a small factor 1/12.

In astronomy the integrator is called the leap-frog be-
cause velocities are “jumping over” coordinates and then
coordinates are “jumping over” velocities. Figure 1 shows
the sequence of advances of coordinates and velocities for the
Euler and leap-frog integrators. Besides being more accurate
than the Euler integrator, the leap-frog integrator has two
more serious advantages. It is time reversible: if we change
the direction of time, flip the direction of velocities and re-
peat all the steps in the reverse direction, we will arrive at
the same initial conditions from which we started (neglect-
ing the rounding errors). This preserves one of the basic
properties of the Newtonian equations of motion: time re-
versibility. Another property is the Hamiltonian structure of
the equations of motion. Because we solve the equations only
approximately, we introduce errors, that in general may be
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non-Hamiltonian. Those non-Hamiltonian errors in practice
result in a gradual change in the total energy of the numeri-
cal solution. The leap-frog integrator has a very good prop-
erty in that its errors are Hamiltonian. In other words, the
numerical solution provided by the leap-frog integration has
Hamiltonian structure, but its Hamiltonian is slightly differ-
ent from the Hamiltonian of the exact solution. Numerical
integrators of this type (preserving Hamiltonian structure)
are called symplectic. So, a constant-step leap-frog integra-
tor is symplectic. An indication that a integrator is symplec-
tic is the lack of a long-term drift in the energy.

One disadvantage of the leap-frog is that velocities and
coordinates are defined at different moments of time. It is
convenient to split the integrator into smaller steps that al-
low for synchronization of time moments and are also eas-
ier to modify when the time-step changes. An algorithm of
integration of trajectories can be written as a sequence of
operators, which advance particle positions (called drifts)
and change velocities (called kicks). Let K(dt) be an oper-
ator (kick) that advances velocities by time dt. Applying
the operator simply means K(dt) : v = v + gdt. Simi-
larly, the drift operator is D(dt) : x = x + vdt. We also
need to specify the moment when the gravitational accel-
eration is calculated and the moment when the decision is
made to change the time-step. So, we use G and S opera-
tors to indicate those two moments. For example, a simple
constant-step leap-frog integrator can be written as sequence
of GK(dt)D(dt)GK(dt)D(dt)....

Using the K and D operators we can also write the
leap-frog integrator which starts with x and v defined at
the same moment of time and ends at t + dt moment:

KDK : K(dt/2)D(dt)GK(dt/2)S. (16)

New accelerations are estimated after advancing coordi-
nates, and the change in the time-step dt is made at the
end of each time-step. The sequence of actions for the KDK
integrator is illustrated in the top panel of Figure 1.

Changing the time-step may be necessary when parti-
cles experience a vast range of accelerations, which is typ-
ically the case in high-resolution cosmological simulations.
However, changing the time-step results in breaking sym-
metries and reducing the accuracy of the leap-frog integra-
tor. It becomes not time reversible and it loses its ability to
preserve the energy. There are some ways to restore these
properties, but they are complicated and never used in cos-
mology.

We illustrate the accuracy and the long-term behavior
of different integrators by applying them to a simple yet
realistic case of the particle motion in a spherical system
with density ρ ∝ r−2 and gravitational potential φ = ln(r).
This is a good approximation for the density of dark matter
halos with the NFW profile around the characteristic “core”
radius. We select an eccentric orbit with the ratio of apo-
to pericenter 10:1. This is somewhat larger than the typical
ratio of 5:1 in the equilibrium NFW profile, but not unusual.
Duration of integration is motivated by how many orbits a
star or a dark matter particle orbiting the center of the Milky
Way galaxy makes over the age of the Universe. It takes the
Sun ∼ 3× 108 yrs to make one period. Thus, we get a total
of ∼ 30 periods of rotation. Assuming a flat rotation curve,
a star with radius of 1 kpc will make 300 orbits over the
age of the Universe. The number of periods for a star or a

Figure 1. Different schemes for numerical integration of equa-
tions of motion. Numbers in circles indicate the sequence of steps
in calculating changes in coordinates and velocities with letter
following the number showing which parameter – coordinates
x or velocities v – is modified. Gravitational acceleration is re-
calculated after each advance in coordinates.

Figure 2. Accuracy of energy conservation for a particle orbiting
the center of isothermal density profile ρ ∝ r−2 in an eccentric
orbit with apo- to pericenter ratio 10:1. Trajectories were followed
with different integrators, each integrator using 500 time-steps per
orbital period. The Euler scheme gives the worst accuracy (note
the change in the y-axis). The leap-frog with a constant time-step
shows no long-term energy drift, but errors are large as compared
with codes with variable time-steps. Errors are smaller for variable
time-step integrators, but they also show a linear trend with time.

dark matter particle is not much different in a dwarf galaxy:
velocities are smaller, but so are the distances. Motivated
by these numbers, we run tests for few hundred periods.
Accuracy of integration also depends on the number of time-
steps, which we assume to be 105 – a realistic estimate for
simulations such as Bolshoi. In our tests we use 500 time-
steps for one orbital period.

Figure 2 shows the results obtained with different in-
tegrators. The Euler scheme was by far the worst. A con-
stant step leap-frog integrator is clearly much better: errors
are much smaller and they do not grow with time; just as
expected for a time reversible symplectic integrator. How-
ever, the errors are still large. The largest error occurs at
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6 A. Klypin

Figure 3. Time stepping scheme for multilevel resolution codes.
In this case a four-level hierarchy of steps is chosen. Numbers in
circles indicate the order of moving particles at different levels.

the smallest radius where the acceleration is the largest. Us-
ing an integrator with smaller time-step at small radius im-
proves the accuracy as demonstrated by two variable time-
step integrators used for the test.

Conditions for changing the time-step are different in
different codes. For example, in the ART (Kravtsov et al.
1997) and RAMSES (Teyssier 2002) codes the time-step de-
creases by factor 2 when the number of particles exceeds
some specified level (typically 2-6 particles). A cell that
exceeds this level is split into eight smaller cells resulting
in the drop by 23 times of the number of particles in a
cell. The time-step also is decreased twice. This prescrip-
tion gives scaling of the time-step with the local density ρ
as dt ∝ ρ−1/3. Zemp et al. Zemp et al. (2007) advocate a
scheme with scaling of dt ∝ ρ−1/2. The GADGET (Springel
2005) and Pkdgrav code use a scaling with the gravitational
acceleration dt ∝ g−1/2, which for ρ ∝ r−2 gives dt ∝ ρ−1/4.

Results for two variable time-step integrators are pre-
sented in two top panels of Figure 2. The first uses the GAD-
GET prescription dt ∝ g−1/2 and the time-step was allowed
to change at the end of each time-step. Note that in real
GADGET runs the time-step changes only by factor 2 when
needed. The second variable time-step integrator uses the
ART and RAMSES prescription dt ∝ ρ−1/3. In our particu-
lar case the density changes ten times along the trajectory.
So, the time-step changes only once when a particle moves
from apocenter to pericenter and once on the way out. The
radius of the time-step jump was arbitrarily chosen to be 1/3
of the apocenter radius. Results clearly show improvement
in the accuracy, but also indicate that errors show system-
atic drift with time.

Most of high-resolution N-body codes have particles
moving with time-steps that differ by a power of 2 from one
group of particles to another. The order of advancing differ-
ent groups and the order of calculation of the gravity force
depends on the particular type of code and implementation.
Grouping of particles according to force resolution comes
naturally in the Adaptive-Mesh-Refinement codes where a
particle is assigned to the highest resolution cell that con-
tains the particle. So, the particle takes the attributes of
the cell: its size defines the resolution and the time-step. In
TREE codes the grouping can be done by particular adopted
conditions for the time-step refinement. Figure 3 gives an
example of a sequence of steps in a four-level hierarchy of
time-steps used in some AMR codes. In this case we chose a

design that attempts to make steps time symmetric. Quinn
et al.Quinn et al. (1997) gives examples of stepping dia-
grams for a TREE code. A different time-stepping sequence
is used in ENZO code. For example, see Figure 2 in Bryan
et al. (2014).

More detailed discussions of time-stepping in N-body
codes can be found in Saha & Tremaine (1992); Quinn et al.
(1997); Springel (2005); Binney & Tremaine (2008).

5 PARTICLE-MESH CODES

There are a number of advantages of Particle-Mesh (PM)
codes (Klypin & Shandarin 1983; Hockney & Eastwood
1988; Klypin & Holtzman 1997) that make them useful on
their own Klypin & Shandarin (1983); White et al. (2014);
Izard et al. (2015); Feng et al. (2016) or as a component
of more complex hybrid TREE-PM codes Springel (2005);
Habib et al. (2014). Cosmological PM codes are the fastest
codes available and they are simple. A PM code solves
the Poisson equation eq.(4) using a regularly spaced three-
dimensional mesh that covers the cubic domain of a simu-
lation. We start with the calculation of the density field on
the nodes of the mesh and then proceed with solving the
Poisson equation. Once that is done, the gravitational po-
tential is differentiated to produce acceleration and particles
are advanced by one time-step.

In order to assign density of particles to the 3D mesh,
we introduce a particle shape (Hockney & Eastwood 1988).
If S(x) is the density at distance x from the particle and
∆x is the cell size, then the density at distance (x, y, z) is a
product S(x)S(y)S(z). Two choices for S are used - Cloud
In Cell (CIC) and Triangular Shaped Cloud (TSC):

CIC : S(x) =
1

∆x

(

1, |x| < ∆x/2

0, otherwise
(17)

TSC : S(x) =
1

∆x

(

1 − |x|/∆x, |x| < ∆x

0, otherwise
(18)

The fraction of particle mass assigned to a cell is just
a product of three weight functions w(x)w(y)w(z), where
r = rp−xi is the distance between particles with coordinates
xp and cell center xi, and the weight function is w(x) =
R xi+∆/2

xi−∆/2
S(xp − x′)dx′:

CIC : w(x) =

(

1 − |x|/∆x, |x| < ∆x

0, otherwise
,

(19)

TSC : w(x) =

8

>

<

>

:

3
4
− |x|2/∆x2, |x| < ∆x/2

1
2

`

3
2
− |x|/∆x

´2
, ∆x/2 < |x| < 3∆x/2

0, otherwise

(20)
Although these relations eqs.(17–20) look somewhat

complicated, in reality they require very few operations in
a code. For the CIC scheme a particle contributes to the 8
nearest cells. If coordinates are scaled to be from 0 to Ngrid,
where Ngrid is the size of the grid in each direction, then
taking an integer part of each coordinate of particle with
center (x, y, z) (in Fortran: i = INT (x)...) gives the lower
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Methods for N-body simulations 7

Figure 4. Example of the Cloud-In-Cell density assignment in
two dimensions. Centers of mesh cells are shown with large blue
circles. Blue dashed square presents boundaries of the cell with
coordinates (i, j). Particle center shown with red cross has coor-
dinates (dx, dy) and its boundaries are shown as red box. Area of
intersection of the red and blue boxes is the mass that the particle
contributes to the cell (i, j). All four cells indicated in the plot
receive a contribution from the particle.

bottom grid cell (i, j, k). See Figure 4 for an example in 2D.
Then the distance of the particle from that cell center is
dx = x − i, dy = y − j, dz = z − k. The contributions of the
particle to density ρ are:
8

>

>

<

>

>

:

ρi,j,k = ρi,j,k + (1 − dx)(1 − dy)(1− dz)
ρi+1,j,k = ρi+1,j,k + dx(1 − dy)(1− dz)

. . .
ρi+1,j+1,k+1 = ρi+1,j+1,k+1 + dxdydz

(21)
Having the density field ρi,j,k, we can estimate the gravita-
tional potential by solving the Poisson equation.

To make the algorithm more transparent, we write the
Poisson equation as ∇2φ = 4πGρ. We select the computa-
tional volume to be a cube of size L3, which is periodically
replicated to mimic the Universe. Coordinates of particles
are in the limits 0 − L: if a particle happens to move over a
boundary of the cube, it appears on the other size the cube.
The computational domain is covered by a cubic mesh of
size N3

grid.The mesh is used to store the density field ρi,j,k.
The algorithm can be written such a way that the same
mesh is used to store the gravitational potential φi,j,k. No
additional storage is required.

We start with applying a 3D Fast Fourier Transforma-
tion (FFT) to the density field. That gives us Fourier com-
ponents on a grid of the same size as the density field ρ̃k,
where k is a vector with integer components in the range
0, 1, . . . , Ngrid − 1. Now we multiply harmonics ρ̃i,j,k by the
Green functions G(k) to obtain amplitudes of Fourier har-
monics of the gravitational potential φ:

φ̃k = 4πGρ̃kG(k), (22)

and then do the inverse FFT to find the gravitational poten-
tial φi,j,k. Note that all these operations can be organized
in such a way that only one 3D mesh is used.

The simplest, but not the best, method to derive the
Green functions is to consider φi,j,k and ρi,j,k as ampli-
tudes of the Fourier components of the gravitational poten-
tial in the computational volume and then to differentiate
the Fourier harmonics analytically. This gives

G0(k) = − 1

k2
x + k2

y + k2
z

= −
„

L

2π

«2
1

i2 + j2 + k2
, (23)

where (kx, ky, kz) = (2π/L)(i, j, k) are components of the
wave-vector in physical units. A better way of solving the
Poisson equation is to start with the finite-difference approx-
imation of the Laplacian ∇2. Here we use a the second order
Taylor expansion for the spacial derivatives:

∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2

≈ [φi+1,j,k − 2φi,j,k + φi−1,j,k (24)

+ φi,j+1,k − 2φi,j,k + φi,j−1,k

+ φ,j,k+1 − 2φi,j,k + φi,j,k−1]/∆x2.

This approximation leads to a large system of linear alge-
braic equations: Aφ = 4πGρ, where ρ is the vector on the
right hand side, φ is the solution, and A is the matrix of
coefficients. All of its diagonal components are equal to -6,
and all 6 nearest off-diagonal components are 1. The solu-
tion of this matrix equation can be found by applying the
Fourier Transformation. This provides another approxima-
tion for the Green functions:

G1(k) =
∆x2

2
× (25)

»

cos

„

2πi

Ngrid

«

+ cos

„

2πj

Ngrid

«

+ cos

„

2πk

Ngrid

«

− 3

–−1

.

For small (i, j, k) eq.(26) gives the same results as eq.(22).
However, at (i, j, k) close to Ngrid the finite-difference
scheme G1 provides less suppression for high-frequency har-
monics and thus gives a stronger and more accurate force at
distances close to the grid spacing ∆x. Hockney & East-
wood (1988) argue that this happens because the finite-
difference approximation partially compensates dumping of
short waves related with the density assignment.

The computer memory puts constraints on the PM
method because the method requires a large 3-dimensional
mesh of size N3

grid while the force resolution increases only
as the first power of Ngrid : ∆x = L/Ngrid, where L is length
of the computational box. As we start to increase the reso-
lution, we quickly run of the computer memory.

6 ADAPTIVE MESH REFINEMENT CODES

We can improve the PM method by increasing the resolu-
tion only where it is needed: by placing additional small-size
elements – cubic cells – only in regions where there are many
particles and where the resolution should be larger. Codes
that use this idea are called the Adaptive Mesh Refinement
(AMR) codes because they recursively increase the reso-
lution constructing a hierarchy of cubic cells with smaller
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8 A. Klypin

and smaller elements in dense regions while keeping only
large cells in regions that do not require high resolution.
There are two ways of doing this: by splitting every ele-
ment of the mesh, that has many particles, into 8 twice
smaller boxes (Khokhlov 1998) or by placing a new rectan-
gular block of cells to cover the whole high density region
(Berger & Colella 1989). ART (Kravtsov et al. 1997; Gott-
loeber & Klypin 2008) and RAMSES (Teyssier 2002) codes
use the first method while ENZO (Bryan et al. 1995) uses
the second. Here we will mostly concentrate our attention
to the method of Khokhlov (1998), which is frequently used
in cosmological N-body simulations. Here we mostly follow
algorithm and presentation of Kravtsov et al. (1997).

Cells are treated as individual units which are organized
in refinement trees. Each tree has a root a cell belonging
to a base cubic grid that covers the entire computational
volume. If the root is refined (split) it has eight children
(smaller nonoverlapping cubic cells residing in its volume),
which can be refined in their turn, and so on. Cells of a given
refinement level are organized in linked lists and form a re-
finement mesh. The tree data structures make mesh storage
and access in memory logical and simple, while linked lists
allow for efficient mesh structure traversals.

The tree ends with unsplit cells, which are called leaves.
This structure is called an octal rooted tree, and is the con-
struct used in TREE codes. We use fully threaded trees, in
which cells are connected with each other on all levels. In
addition, cells that belong to different trees are connected to
each other across tree boundaries. All cells can be considered
as belonging to a single threaded tree with a root being the
entire computational domain and the base grid being one
of the tree levels. The tree structure is supported through a
set of pointers. Each cell has a pointer to its parent and a
pointer to its first child. In addition, cells have pointers to
the six adjacent cells (these make the tree fully threaded) so
that information about a cells neighbors is easily accessible.

An elementary refinement process creates eight new cu-
bic cells of equal volume (children) inside a parent cell. When
the parent is refined, it is checked if all six neighbors are of
the same level as the parent. If there are coarser neighbors
(of smaller level than the parent), those neighbors are also
split. If a neighbor in its turn has coarser neighbors, the
neighbors neighbors are also split, and so forth. We thus
build a refinement structure that obeys a rule allowing no
neighbor cells with level difference greater than 1.

Once the refinement structure is build, we can solve the
Poisson equation. On the zero (lowest) level all the volume is
covered with a constant-size grid, and the Poisson equation
is solved with the FFT method described in Section 5. The
zero-level solution is used on the first refinement level either
as an initial guess for the potential of a split cell or as a
boundary condition for cells that are not split. After the
Poisson equation is solved, the process repeats on the next
level.

On each non-zero-level the Poisson equation is solved
using iterative relaxation method (Hockney & Eastwood
1988; Kravtsov et al. 1997). We write the Poisson equation

∇2φ = ρ (26)

as a diffusion equation

∂φ

∂τ
= ∇2φ − ρ. (27)

As the fictitious time τ increases, the initial guess for φ
approaches (relaxes to) an equilibrium solution, which is the
solution of eq.(26). The finite-difference form of eq.(27) is:

φn+1
i,j,k = φn

i,j,k +
∆τ

∆2x

 

6
X

l=1

φn
l − 6φn

i,j,k

!

− ρi,j,k∆τ, (28)

where the summation is over cell’s 6 neighbors, ∆x is the
cell-size at the current level, and ∆τ is fictitious time-step.
For stability reasons ∆τ 6 ∆2x/6. By selecting the maxi-
mum allowed time-step, we write the iteration scheme as:

φn+1
i,j,k =

1

6

6
X

l=1

φn
l − ∆2x

6
ρi,j,k. (29)

The convergence of the relaxation method can be improved
in two ways. First, we split all the cells into “black” and
“red” such that every “black” cell has only “red” neighbors
and vice versa. (One can think about a 3d chess board). Each
iteration is split into two phases: find and replace φ only for
all “red” cells, and then only for “black” ones. Second, one
can use successive overrelaxation (SOR) technique (Hockney
& Eastwood 1988).

7 TREE AND TREE-PM CODES

TREE codes Appel (1985); Barnes & Hut (1986); Stadel
(2001); Salmon & Warren (1994); Springel et al. (2001) use
different ideas to estimate the force of gravity. Instead of
solving the Poisson equation on a mesh as PM and AMR
codes do, the TREE codes split particles into groups of dif-
ferent size and replace the force from individual particles in
the group with a single multipole force of the whole group.
The larger is the distance from a particle, the bigger is the
allowed size of the particle group. Modern variants of the
TREE algorithm are typically hybrid codes with the long-
range force treated by a PM algorithm and the short-range
handled by a TREE code (Xu 1995; Bagla 2002; Springel
2005; Warren 2013; Habib et al. 2014). Thus, there are four
components of a TREE code: (1) Grouping algorithm, (2)
Multipole expansion, (3) Condition for selecting size of the
group (opening angle condition), and (4) Splitting the long-
and short-distance forces.

Grouping. The oct tree algorithm is typically used
in many TREE codes Springel (2005); Salmon & Warren
(1994); Warren (2013). If the number of particles in a cell
exceeds a specified threshold, it is split into 8 small cubic
cells. Example of the oct tree is shown in Figure 5. Binary
KD trees were used by Stadel (2001). In this method bound-
aries of rectangular cells are defined by the position of me-
dians of coordinates of particles along each alternating di-
rection. In some cases cells are quite elongated in KD tree
algorithm. This can be mitigated by modifying the grouping
algorithm. Gafton & Rosswog (2011) proposed the Recur-
sive Coordinate Bisection (RCB) algorithm that splits cells
at the center of mass with the direction of the bisecting
plane being perpendicular to the direction of the maximum
cell size. Indeed, Figure fig:TREEgroup indicates that cells
are less elongated in the case of the RCB algorithm, which
is used by Habib et al. (2014).

Tree is truncated once a cell reaches a specified min-
imum number of particles. In this case the cell called a
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Figure 5. Examples of particle grouping algorithms for TREE
codes. Left panel: the oct tree for 14 particles presented by blue
circles. If the number of particles in a cell exceeds a specified
threshold (in this case one particle), it is split into 8 small cubic
cells (4 cells in 2D). Red dashed lines show opening angle θ for
a particles close to the centre and for a cell indicated by a thick
blue square. Middle panel: binary KD tree for the same set of
particles. Boundaries of rectangular cells are defined by position
of medians along each alternating direction. In some cases cells
are quite elongated. Right panel: Recursive Coordinate Bisection
tree. Cells are split at the center of mass with the direction of
the bisecting plane being perpendicular to the direction of the
maximum cell size. Cells are less elongated than in the case of
KD trees.

leaf. The number of particles in a leaf can be as low as
one. However, it can be significantly larger (Wadsley et al.
2004; Habib et al. 2014). If a leaf has more than one particle,
then forces between particles in the cell are estimated using
pair-wise summation. This can be faster than building more
levels of the TREE hierarchy.

Multipole expansion. A number of physical quantities
is collected for each cell that are used for force estimates.
GADGET-2 code (Springel 2005) stores the mass and the
center of mass of all particles in a given cell. Multipole ex-
pansion up to hexadecapole is used in PKDGRAV (Stadel
2001). Quadrupole expansion was used by Springel et al.
(2001) and Dubinski et al. (2004). There is no rule what
order of expansion to select. Low orders are faster to cal-
culate and less memory is needed to store the information.
At the same time, higher orders of expansion may allow one
to use larger opening angles resulting in faster overal cal-
culations. Grouping algorithm may also affect the selection
of the expansion. The bisection trees can produce elongated
cells implying that a higher order of mass expansion may be
needed to maintain force accuracy.

Cell opening condition. Once the TREE is constructed
and all information regarding mass distribution in each cell
is stored, we start to find the forces by looping through all
leaves and for each leaf by walking along the TREE down
from the largest cells. Each cell of size l is tested whether
angle θ ≈ l/d at which it is seen by particles in the leaf at
distance d is too large. If θ exceeds a specified threshold,
the force contributions are not taken from the cell itself. We
“open” the cell meaning that we descend to children of the
cell and test them regarding their opening angles. Once the
opening angle is small enough, the force contribution from
the cell is accepted, and the algorithm proceeds to the next
top-level cell.

Particular implementation of the cell-opening condition
changes from code to code. In GADGET-2 the force is ac-
cepted if

θ =
l

d
6
p

αg/[GM/d2], (30)

where g is the particle acceleration from the previous time-
step, d is the distance from the particle to the cell of mass
M and linear size l. Here α is a tolerance parameter defining
the error of the force. There is an additional condition that
each coordinate distance of the particle and geometrical cell
center should be small:

|di − ci| 6 0.6l, i = 1, 2, 3 (31)

where di and ci are coordinates of the particle and the cell
center. GASOLINE (Wadsley et al. 2004) uses opening con-
dition:

θ =
2Bmax√

3d
6 α, (32)

where Bmax is the maximum distance between the cell center
of mass and a particle in the cell, d is the distance from the
particle, for which the force is estimated, to the cell center
of mass, and α is the tolerance parameter.

Splitting the long- and short-distance forces. In order
to advance particles from one moment of time to another
we must estimate the total force of gravity acting on each
particle. We can split the total force into a smoothly varying
part handled by the PM method and a short range force
estimated by the TREE code. For example, we imagine that
a point-size particle – a delta function in space – with mass
m and position ri is split into two components: (1) a sphere
S of constant density and radius rs , and (2) the point mass
m minus the sphere with mass m. Schematically we can
write the total density as

ρ(r) = S(r − ri; rs,m) + [mδ(r− ri) − S(r− ri, rs,m)]

≡ ρPM + ρTREE. (33)

If we open the brackets and collect all the terms, we get just
the original point mass. Note that the second term in the
r.h.s, ρTREE, has the total mass equal to zero. So, it does
not produce a force at distances r > rs. It can be estimated
by a TREE algorithm which is simplified in this case by the
fact that we should not look for force contributions from
particles and cells which distance is larger than rs. In other
words, the walk over the tree includes only a local search.
This dramatically speeds up the TREE part of the code.
The first term ρPM represents the smooth component of
the density distribution and can be efficiently handled by
the PM algorithm. This splitting algorithm also simplifies
the situation with periodical boundary conditions, which is
a complication for pure TREE codes.

In practice, the sphere S may not have a constant den-
sity, and the point mass should be replaced by softened
density profile. Hockney & Eastwood (1988) present de-
tails of force splitting used in historically important P 3M
code. Here we follow the prescription for the for splitting
in GADGET-2. Another example of force splitting is given
by Habib et al. (2014). The gravitational potential φ in
GADGET-2 is split in Fourier space into two components
φk = φPM

k + φTREE
k , where the long-distance part φPM

k is
obtained with the PM code that has additional filter rs:

φPM
k = φk exp(−k2r2

s). (34)

The scale of the filter is larger by the factor 1–3 than the PM
cell-size. The short range part of the gravitational potential

c© 0000 RAS, MNRAS 000, 000–000



10 A. Klypin

is estimated in the real space:

φTREE
k (x) = −G

X

i

mi

|x − ri|
erfc

„

|x − ri|
2rs

«

, (35)

where the summation is taken over all particles and cells
that can contribute to the short-range force at x.

8 EVOLUTION OF THE DARK MATTER
DENSITY AND THE POWER SPECTRUM

We review some results of N-body simulations. It is nearly
impossible to even mention all important results and to cite
all relevant publications – there are too many of them. The
goal is to present the main qualitative results and trends of
few basic properties of the distribution and evolution of the
dark matter: the density distribution function and the power
spectrum. Results presented below have been known be-
fore. They are reproduced using the publicly available Mul-
tiDark and Bolshoi simulations (Riebe et al. 2013; Klypin
et al. 2011, 2016) and simulations done usingthe PM code
of (Klypin & Prada 2016) All simulations use the Planck
cosmological parameters (Planck Collaboration et al. 2013).

8.1 Dark matter density

At very high resdhsifts and on very large scales fluctuations
grow close to the predictions of the linear theory. As the
amplitude of fluctuations increases, they enter the regime of
non-linear evolution. The transition to the non-linear regime
is complicated and can be roughly split into two stages:
weakly and strongly non-linear.

We start with the evolution of the probability density
function (PDF), which tells us what fraction of the volume
is occupied by regions with a given density. We randomly
place in space a cube of size ∆x and measure the mass M
inside it and its average density: ρ = M/∆x3. What is the
probability p(ρ)dρ that the volume element has density ρ?
This quantity has a long history in cosmology (Coles & Jones
1991; Kofman et al. 1994; Lam & Sheth 2008). We will dis-
cuss PDF for dark matter, but instead we also could analyze,
for example the distribution function of galaxies. That leads
us to the statistics called cell counts: how many cells have N
objects (Hubble 1936; White 1979; Sheth et al. 1994; Mari-
noni et al. 2005).

In the linear regime the distribution function is a Gaus-
sian:

plin(ρ) =
1√

2πσ2
exp

„

− δ2

2σ2

«

, (36)

where δ ≡ ρ/ρm − 1 is the density contrast, ρm is the av-
erage density, and σ2 is the dispersion of δ. As the fluc-
tuations grow, they become nonlinear, and p(ρ) starts to
show deviations from the Gaussian distribution. Figure 6
shows the evolution of PDF as measured with cells of size
∆x = 2.2h−1Mpc . At redshift z = 20 the fluctuations are
almost in the linear regime and p(ρ) is well approximated by
the Gaussion distribution eq. (36). Still, the fit is far from
perfect. For example, the peak of p(ρ) is at ρ < ρm, and
there is an excess of cells with large densities. This happens
because the fluctuations just start to deviate from the linear
growth.

Figure 6. Evolution of the density distribution function with the
redshift. The PDF was estimated using cells with size 2.2h−1Mpc.
At z = 20 the fluctuations at this scale are still almost in the
linear regime with the Gaussian distribution (dot-dashed curve)
providing a good fit. By z = 4 stronger non-linear effects result in
a very skewed distribution with the maximum of p(ρ) shifting to
low density and significant enhansment at large densities. At this
stage of evolution p(ρ) can be approximated by the log-normal
distribution (dashed curve). However, it starts to badly fail for
later states of evolution.

By z = 4 the non-linearities become stronger, which is
clearly demonstrated by a very skewed shape of the PDF:
the maximum has shifted to even lower densities, and more
mass migrated to larger densities. At this weakly non-linear
regime the PDF can be approximated by the log-normal
distribution (Coles & Jones 1991; Lam & Sheth 2008):

plog(ρ) =
1√

2πσ2

„

ρ

ρm

«−1

exp

„

− [ln(ρ/ρm) + σ2/2]2

2σ2

«

,

(37)
When the fluctuations become strongly nonlinear, the

PDF develops a very long tail at large densities while its
maximum shifts to even lower densities. Figure 7 shows
ρp(ρ) at different moments. Here we use a small cell size of
∆x = 1.1h−1Mpc that also allows us to probe fluctuations
with larger densities. At z = 4 the log-normal distribution
still provides a fit for data around the maximum of PDF,
but it fails in the wings. At z = 0 the log-normal distribution
becomes nearly useless: it fails practically everywhere.

At this strongly non-linear regime the distribution func-
tion p(ρ) develops a nearly power-law shape with an expo-
nential decline:

p(ρ) ∝ ρ−2 exp(−αρ3/4), ρ > 10ρm. (38)

Figure 7 shows that this provides at very good approxima-
tion to the data.

Figure 8 shows the evolution of the dark matter power
spectrum and demonstrates the three regimes of growth of
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Figure 7. Detailed view of the density distribution function. PDF
is scaled with the density and plotted on the logarithmic scale.
A small cell of 1.1h−1Mpc is used. At z = 4 the log-normal dis-
tribution substantially deviates from the data at both low and
large densities, but gives a sensible fit close to the maximum. At
z = 0 the distribution function is so asymmetric that it cannot
be even remotly approximated by the log-normal distribution. At
large densities p(ρ) is accurately approximated by a power law
with an exponential decline.

fluctuations (Peacock & Dodds 1994, 1996; Smith et al.
2003):

(1) On large scales (small k) fluctuations grow accord-
ing to the predictions of the linear theory. Here the shape
of the power spectrum P (k, z) does not change, but its am-
plitude increases with time: P (k, z) = D2(z)Plin(k), where
D(z) is the linear growth factor normalized to be unity at
present D(z = 0) = 1, and Plin(k) is the linear power spec-
trum.

(2) On smaller scales (larger k) the fluctuations enter
a weakly non-linear regime where the amplitude of fluctua-
tions is still relatively small, but the fluctuations grow sub-
stantially faster than in the linear regime. The scale at which
the fluctuations start to show a non-linear trend evolves
with time. As time increases, the wavenumber of the tran-
sition kNL becomes smaller and the amplitude P (kNL) in-
creases. The exact value of kNL is somewhat arbitrary. If
we choose the point at which P (k) is, say 20% larger than
the linear theory, than kNL ≈ 0.2hMpc−1 at z = 0 and
kNL ≈ 1hMpc−1 at z = 5.5.

(3) On even smaller scales the fluctuations become
strongly non-linear and enter regime of stable clustering.
Contrary to naive expectations, the rate of the non-linear
evolution is the fastest in the weakly non-linear regime. In
strongly non-linear regime the dark matter is mostly in col-
lapsed and nearly virialized halos. The halos still accrete
mass and grow, but most of this mass stays in the outer halo
regions. The inner regions the halos preserve their proper ra-

Figure 8. Evolution of the dark matter power spectrum. Sim-
ulations with different computational boxes and resolutions are
shown by circles with different colors. Blue curves show predic-
tions of the linear theory. The plot shows that at any redshift
the power spectrum P (k) has three regimes of growth: (1) linear
growth on very long waves (small k . 0.1 hMpc−1) followed on
larger wave-numbers by (2) the weakly non-linear regime where
fluctuations grow much faster than predictions of the linear the-
ory, and (3) strongly non-linear evolution at k & 1 hMpc−1. In
this regime the power spectrum gradually approaches power-law
P (k) ∝ k−2 shown as the dashed line in the plot.

dius and mass (such the name “stable clustering”). Assum-
ing that the number of pairs with a given proper separation
r is preserved, the only effect, which is left, is the shrinking
of halos in the comoving coordinates x = r/a. This leads to
the increase in the power spectrum P (k′) ∝ a3 and to the
increase of the wavenumber k′ = ak (Davis & Peebles 1977;
Smith et al. 2003). In the P (k, z) − k plane, points start to
drift to the right along k axis and upward along P axis as
the fluctuations enter the stable clustering regime.

There are different ways to make analytical predictions
for the non-linear evolution of the power spectrum. Hamil-
ton et al.Hamilton et al. (1991) were the first to propose
a physically motivated phenomenological model of mapping
the linear correlation function ξlin(r) ∝ a2 into the nonlin-
ear function ξ(r′) by assuming a transition from the linear
regime where ξ = ξlin ∝ a2 and r′ = r to the regime of stable
clustering where ξ(r′) = aξlin ∝ a3 and r3 = (1 + ∆2

NL)r′3,
where ∆2

NL is the non-linear estimate of the amplitude of
fluctuations on the scale r′. Later Peacock & Dodds (1994,
1996); Smith et al. (2003) improved the model, which works
reasonably well providing ∼ 10% level of accuracy (Kravtsov
& Klypin 1999; Heitmann et al. 2010). This may not be ac-
curate enough for some tests. However, the model has an
advantage that it provides a sensible approximation even at
very large k were no other approximation works. It also gives
qualitative explanation of the very non-linear regime.

c© 0000 RAS, MNRAS 000, 000–000
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Figure 9. Left panel: Dependance of the bias parameter b =
p

PDM(k)/Plinear(k) on the wave-number and redshift. Wiggles at
k ∼ (0.1− 0.3)h−1Mpc are related with the smearing of the BAO oscillations by the non-linear interactions. Right panel: Bias parameter
re-scaled to have the same k at b = 2. The plot illustrates self-similar growth of perturbations in the strongly non-linear regime b & 2.

There is a different way of looking at the evolution of
the power spectrum. Instead of plotting P (k) at different
redshifts, we can study the evolution of the ratio of the power
spectrum P to the prediction of the linear theory Plin. This
quantity is called the dark matter bias:

b2(k; z) ≡ P (k; z)

Plin(k; z)
. (39)

Left panel in Figure 9 shows the evolution of the bias b(k; z)
for the ΛCDM model with the Planck cosmological param-
eters. At any redshift there is a region at low wave-numbers
k where b ≈ 1. This is the domain of the linear growth of
fluctuations. At larger k the bias factor starts to increase
first as k ≈ 1 + α(z)k2, where α(z) is a function of time.
Then at larger k the bias factor deviates from this simple
shape.

At k ∼ (0.1 − 0.3)h−1Mpc there are wiggles in the bias
parameter that grow over time. Those wiggles are associated
with the Baryonic Acoustics Oscillations (BAO, Eisenstein
& Hu (1998); Eisenstein et al. (2005)). BAOs are related
with the propagation of acoustic waves in the primordial
plasma before the epoch of recombination z ≈ 1000. During
the recombination there is a sudden drop in the gas pres-
sure and sound speed, which in turn effectively terminate the
propagation of the acoustic waves. The characteristic scale of
the acoustic horizon at the moment of recombination trans-
lates into a peak in the correlation function at ∼ 110h−1Mpc
for the standart cosmology. (The exact value depends on cos-
mological parameters Ωm, Ωb, and h). The Fourier transform
of the peak in the correlation function produces wiggles in
the power spectrum of perturbations. As the perturbations
enter non-linear regime, the peaks and throughs in Plin(k)
start to be smeared out. This is observed as appearance of
wiggles in b(k) in the weakly non-linear regime.

It is interesting to study the shape of the bias parameter
at large wave-numbers. In order to clarify the situation we
re-scale b(k) functions at different redshifts to have the same
value of k at b ≈ 2. This is done by scaling k while keeping
the bias parameter unchanged: b(kβ(z)), where β(z) is a
factor that monotonically decreases with the redshift and
β(0) = 1. The right panel in Figure 9 presents the rescaled
bias parameter. It shows that the the bias parameter at large
values b & 2 evolves in a self-similar fashion: as fluctuations
evolve the same shape of b(k) simply shifts to smaller and
smaller wave-numbers. In the limit of very large k the initial
power spectrum scales as Plin(k) ∝ k−3 and in the strong
non-linear regime P (k) ∝ k−2. So, the bias parameter should
increase as b ∝ k1/2. At k = (3 − 10)h−1Mpc (the largest k
in Figure 9) the initial power spectrum is slightly shallower
with Plin(k) ∝ k−2.6, which gives b ∝ k1/3, which is what
we see in the simulations.
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