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The PSCz Redshift Survey: One of several redshift

surveys which used the IRAS satellite (IR) selected galaxy catalogs, in
order to avoid the extinction effects
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r is radius-vector
X is comoving coordinates

a(t) is the expansion factor:

1
a(t) =

1+ 2
= a(t) x + a(t) x = HEOr + Vpec

R =Vobs/H is the redshift-space coordinate

Vpec IS the peculiar velocity



Redshift distortions: long waves
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Correlation function: definition

Suppose there are N objects in a volume V. The number

of objects dN expected in a small volume element dV is
simply:

dN = ndV, (1)

where n is the number-density of objects: n = N/V. Note
that we can call dN the expected average number of objects
for a randomly selected volume element in space. If dV is

sufficiently small, than dN is less than unity and we can
treat dN as a probability to find an object in a dV element.

Now we make the situation more complicated. Let’s se-
lect an object and ask question of finding another object at
a distance R in a volume element dV. If positions of ob-
jects are not correlated (random), than the answer is the
same: ndV . However, the objects may be correlated or anti-
correlated. In this case we can write the probability as:

dN = n(1 + £(R))dV, (2)

where £(R) is called the correlation function. If £(R) = 0,
we have uncorrelated distribution of objects in space. If it

is positive, than there is excess probability to find an object
at distance R.



Correlation function: definition

The correlation function is defined as the a quantity
averaged over all objects. We take the first object and find

dN1(R) for that object. Take the second object and do the
same. Continue for all objects. Now average dN;(R) to find

E(R):

ER) = (57) - 1. 3

This gives us another definition of the correlation func-
tion: the correlation function is the average number-density
profile of objects in excess of random around a randomly
selected object.




Correlation function: definition

Another — equivalent — definition of the correlation func-
tion follows from counting pairs of objects with separations
(R, R+dR). We start with joint probability to find an object
in a volume dV7 and another in dV5. It can be written as:

dN = n’(1 + &(R))dVidVs, (4)

This definition is easy to convert to algorithm to find the
correlation function. Count the number of pairs of objects
with given separation (R, R + dR). Now estimate the same
quantity for randomly placed objects. We call the first quan-
tity ((DD)) (the term DD stands for data-data pairs). Now
randomly place in space the same number of objects and
count their pairs, which call RR for random-random pairs.
The correlation function is:

§R) = (a1 @



Correlation function: definition

This 1s usually quantified using the 2-point correlation
function, § (r), defined as an “excess probability” of finding

another galaxy at a distance r from some galaxy, relative to a
uniform random distribution; averaged over the entire set:

dN(r) = p, (L + E(r) AV, aV,

Correlation function is often approximated with a

power law: 5(}/) _ (r / ro )}/

Parameter ro is called the correlation length



Estimators of the correlation function

 Simplest estimator: count the number of data-data pairs, (DD),

and the equivalent number 1n a randomly DD
generated (Poissonian) catalog, (RR) : &(r) _ < > ~1
e

" (RR)

e A better (Landy-Szalay)
estimator 1s:

£(r). - (DD)-2(RD) +(RR)

where (RD) is the number <RR>
of data-random pairs

» This takes care of the edge effects, where one has to account
for the missing data outside the region sampled, which can
have fairly irregular boundaries



Angular and 3D correlation functions
N _1/2
win) =2 o) -17) dr

I'p. projected distance between pairs of galaxies,

1. distance parallel to the line of sight
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Inverting angular correlation function

©.0)

wy(rp) = 2/0 dyf[(rpz +y2)1/2} = 2/ rdr f(r)(rz— rpz)_l/z
(3)

1 O
)=~ [ we -



Redshift distortions: finger-of-god’ effect
on small scales
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Angular correlation function wyp(rp)

S A If only 2-D positions on the sky
| | are known, then use angular
separation 6 instead of distance r:
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Fic. 6.—Projected galaxy correlation function w,(r,) for the flux-limited I _ &(r)=(r/5.59 h™'Mpc) " i
galaxy sample. The solid line shows a power-law fit to the data points, using the i ]
full covariance matrix, which corresponds to a real-space correlation function 0.01 Ll ol L
£(r) = (r/5.59 h~' Mpc) %%, The dotted line shows the fit when using only the 0.1 1 10
diagonal error elements, corresponding to £(r) = (#/5.94 h~' Mpc)™ 7. The r (h™! Mpc)

fits are performed for r, < 20 2~' Mpc.
Fic. 7.—Real-space correlation function &£(r) for the flux-limited galaxy

sample, obtained from w,(r;,) as discussed in the text. The solid and dotted lines
show the corresponding power-law fits obtained by fitting w),(r,) using the full
covariance matrix or just the diagonal elements, respectively.
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Fic. 8.—Top left: Projected galaxy correlation functions w,(r,) for volume-limited samples with the indicated absolute magnitude and redshift ranges. Lines show
power-law fits to each set of data points, using the full covariance matrix. Top right: Same as top left, but now the samples contain all galaxies brighter than the indicated
absolute magnitude; i.e., they are defined by luminosity thresholds rather than luminosity ranges. Bottom panels: Same as the top panels, but now with power-law fits
that use only the diagonal elements of the covariance matrix. [See the electronic edition of the Journal for a color version of this figure.]
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Clustering of different galaxies
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Galaxy
Correlation
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Correlation function on
large scales: baryonic
oscillations
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Clustering: galaxy morphology
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Bias b2 = W(r, samplel )/W(r,sample2)
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Fic. 11.—Relative bias factors for samples defined by luminosity ranges.
Bias factors are defined by the relative amplitude of the w),(r,) estimates at a
fixed separation of r, = 2.7 h~! Mpc and are normalized by the —21 < M, <
—20 sample (L =~ L.). The dashed curve is a fit obtained from measurements
of the SDSS power spectrum, b/b, = 0.85+4 0.15L/L, — 0.04(M — M,)
(Tegmark et al. 2004a), and the dotted curve is a fit to similar wy(r,,) measure-

ments in the 2dF survey, b/b, = 0.85 4+ 0.15L/L, (Norberg et al. 2001).




Power Spectrum

0(k) is the Fourier P(k) = |6 (k)|2

amplitude

A ] .
k
* Nalve estimator for a discrete density field is f(k) = E el n

N 4

* We need to take into account (1) selection f(k) — Eq)(r )eikrn _ W(k)
function ¢(r) and shot noise w(k) - !

n(r)
1+7(r)P(k)

P(r) =



The Wavelength A [h~! Mpc]
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