Definitions, Methods, and Tools

* Dynamical time, Circular velocity, Rotational velocity
* Virial theorem, Jeans equations

* Two-body scattering
* Dynamical friction



Circular velocity V. is defined as:| V2/r = g(r). where
g(r) is gravitational acceleration. For spherical system

GM(r) , M(r)=4n /0 p(r)ridr. (1)

2
Circular velocity is the velocity of an object moving on a
circular orbit under the action of the force of gravity. It
does not depend on the rotation of the object. It is another
way of measuring mass distribution.

Dynamical time. First consider a homogeneous sphere
with constant density p(r) = const. Take a particles at rest
at a distance r from the center and drop it. Equation of
motion of the particle is:

d*r GM(r) _  4nG (2)
dt2 r2 3

g(r) =

This is equation of harmonic oscillator with frequency w :

where w? = %X Gp. Period of oscillation is equal to

27 3
T = ” —wa—p. (3)

Now we define the dynamical time as 1/4 of the period:

T 37

For a sphere with constant density the dynamical time does
not depend on initial radius. It depends only on the density
p. This is not true for other density profiles. We typically
expect that Ty,, is shorter for orbits closer to the center
where density is larger. We treat the dynamical time as a
scale, not as an accurate value.

Other related quantities: Free-fall time. We get an es-
timate of this allowing the sphere in the previous example

to collapse. This is the same as having all the mass at the
center. Typical estimate:

Treetall = Tayn/V/(2). (5)

Crossing time: If R is typical radius of a system and V is
typical velocity, then crossing time is:

R
Tcross ~ "—/ (6)




Virial theorem. We have an isolated system of N ob-
jects. Masses, coordinates and velocities are given: m;, 7, Vi.
We are looking for a relation between the total kinetic en-
ergy and the total potential energy. The energies are:
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We start with defining the moment of inertia:

N
1= Zmi[ﬁ?iz -+ yﬂ::2 -1- Ziz]- (8)
=1
We will differentiate Z twice with respect to time ¢ and then
use equations of motion. At some moment we use the New-
ton’s law of gravity. At the end of calculations we find:
d*T
— = 2K+ W. 9
This is the virial theorem. Typically it is applied with the
assumption that the d*Z/dt* = 0 implying a stationary sys-
tem.



We can use the virial theorem to estimate the mass of
a stationary isolated system. We introduce the gravitational
radius 7, of a system:
GM?
W = (10)

Tg

Note that here we do not assume anything about the system.
We do not assume that is spherical or its density is smooth;
no assumptions. This equation simply states that potential
energy scales as M?. Details of the mass distribution are
hidden in r,. For a system with equal-mass points we have:

Lo (. (11)

Kinetic energy can be parameterized as
M{V?)

2 ?
where (V?) is the velocity dispersion. Again, no assumptions
here: this is always valid. Assuming that the line-of-sight

velocity dispersion is 1/3 of the 3d velocity dispersion, we
get the following estimate of the mass:

K= (12)

3<Vlgs>7'g

o
Here we specifically assumed that the observed rms veloc-
ities are equal to the rms velocities of all material in the
system, which may not be correct. However, experience with
different systems (either analytical models or numerical sim-
ulations) shows that this is not a bad approximation. The
main problem is to estimate r,. There are a number of prob-
lems with the estimate. First, r, typically is a radius, which
is dominated by large-distance pairs. Each pair has a rela-
tively small contribution, but there are many of them and
they dominate the final result. Because observationally it is
more difficult to measure objects in outer radii of a system,
we are susceptible to numerous observational complications
(e.g, projection or non-equilibrium effects). Second, spatial
distribution of observed objects may be very different as
compared with, say dark matter.

It is remarkable that the virial theorem still gives sensi-

ble estimates of masses. It is generally believed that it gives
estimates within a factor of 2 of the real values.

M = (13)



Jeans equations:. We would like to have methods to
estimate masses of galaxies. The virial theorem is not a use-
ful tool for that for different reasons. First, virial radius
of galaxies is substantially larger than the size of regions
where we can reliably measure velocities. For example, for
our Galaxy the virial radius is about 250 kpc while the opti-
cal radius is about 10-20 kpc. For Milky Way we can use
motion of remote globular clusters and satellite galaxies.

However, this information is not available for other galax-
ies. Second, the virial theorem gives us only one mass: mass

of the whole system, and we would like to measure density
profile, not just one point.

The main path to address this issue is to start with the
Boltzmann equations then assume a stationary system, and
derive Jeans equations that relate stellar kinematics (dif-
ferent components of velocities) with the mass distribution.
Here we just use those equations without a rigorous deriva-
tion.



Start with the simplest case and then add more realis-
tic features. Suppose we have a system where all stars move
on pure circular orbits at different distances from the cen-
ter. There are no other motions — just circular velocities.
However, there is a distribution of mass M (r) so that the
gravitational acceleration g changes with radius. For sim-
plicity assume that the mass distribution is spherical. Now
we can relate the rotational velocity with the mass M(r):

=9
T r r

Vest = g = GMIT) _, v, = \/ O g

In this case rotational velocity Vo 1s equal to the circular
velocity. We measure the rotational velocities in observations
and recover the distribution of mass M(r). Note that here
the mass is the total mass of all components (visible or not)
while the rotation is measured using some subsample of the
stars in the system.
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Cumulative mass profile of Carina dSph galaxy
(satellite of the Milky Way) using four different
constant velocity anisotropies

Another case: no rotation, isotropic velocities. In this
case there are only random vel ocities and no systematic
rotation. At each point in space velocity distribution is
isotropic with all three velocity dispersions equal: 0 = 0y =
og. Jeans equations take the form of familiar equation of hy-
drostatic equilibrium:

19(no?) _  GM(r)

n Or r2

: (15)

where n(r) is the number-density of objects at distance r
from the center. This gives us way to find mass (and den-
sity) profile for the system: measure the number-density of
a stellar population and their rms velocities. Then use the
equation to find M (r).

In more general case there is a velocity anisotropy:

2 2
_1_ 9410
=1 %07 (16)
In this case the Jeans equation is:
1 8(no?) : 2807 _ G’M('r), (17)

n Or r r2

In order to apply this equation one needs to make an as-
sumption regarding the velocity anisotropy . The eq. 17
is typically used for elliptical galaxies and dwarf spheroidal
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For spiral galaxies with fast rotation the Jeans equa-
tion can be written slightly differently. Quantities involved:
Viot = rotational velocity. afb = velocity dispersion in the
direction of rotation. o7 = velocity dispersion in the radial
direction. n(r) = number-density of stars with measured ve-
locities. V.2 = g(r)r - circular velocity. The Jeans equation

1S:

r d(no?)

2 2 2_ 2 ,
‘/rot—‘/c +(Jr Jd)) ! n ar

(18)

Note that we expect that the rotational velocity be smaller
than the circular velocity V.2; < V.2 because the radial ve-
locity dispersion is larger than the tangential velocity dis-
persion and the last term is negative. Again, in spite of the
fact that we measure velocities of some observable compo-
nent (say bright stars), the recovered circular velocity and,

thus mass is for all mass.



How important are effects of discreteness: the fact that there are
individual starts, not just a smooth density distribution
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Two-body relaxation plays a central role in the evolution of most
clusters considered here. The local relaxation time 1s (Spitzer 1987)

tix = 0.339— ! -~ 4.8 x 10" yr
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where (M ) 1s the average stellar mass and N, the total number of
stars. For systems with a broad stellar mass spectrum, we use y. =
0.01 in the Coulomb logarithm
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7.1 Dynamical Friction
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FiG. 1.—Collection of orbits in the plane (x, y) computed within TLR, for r,,/r, = 0.5 and initial eccentricitics e,,, = 0.8 (top left), 0.6 (top right), 0.3
(bottom left), and 0 (bottom right). Length is in units of r,.
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