Friedmann Equation: Newtonian derivation

Consider a sphere, which expands in a homogeneous Universe. For non-relativistic
particles the mass inside the sphere is constant. We need to find how the radius of
the sphere changes with time. Later we will add corrections due to effects of GR.
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Use the fact that mass inside comoving radius is
preserved:
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Multiply eq(*) by Zé we get 2(2 -— - ....-—-

The I.h.s. is a full derivative: (R

The r.h.s. also can be written as a full derivative: PRR - kad_tﬁ )

Now, we can integrate the equation to get:
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Let's first find the constant B. At a=1, H=Hp, and introduce a new constant:
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Because for non-relativistic particles mass in a comoving volume is preserved, we
can re-write the Fieadmann equation in a different form:
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We can find how the contribution of matter to the total density changes with time:
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Solution of this equation is:
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1.1 Definitions

It is convenient to express densities by introducing €2 - the contribution of particular com-

ponent to the critical density of the Universe:

Q(t) = ’;ft) o = 210, (1)

We will use indexes to specity particular component and moment of time. For example, for

the total mass of dark matter particles and baryons at z = 0 we use notation {2, o. For the
Hubble constant at z = 0 we use notation Hy. Depending on the context, we often drop

subscript ”0” for omegas defined at redshift zero.



1.2 Nonrelativistic particles

The total number of nonrelativistic particles (e.g., at low redshifts electrons, protons and
neutrons) is preserved in a sufficiently large comoving volume. Particles may participate in
nuclear reactions that change abundances of different elements. Example can be the nuclear
reactions inside stars that burn protons into He*. However, reactions preserve the number of
baryons. The same is for electrons. Elements can get ionized or can recombine changing the
number of free electrons, but the total number of electrons — bound or not — is preserved.
The fact that the mass of nonrelativistic particles is preserved in a comoving volume V
means that the product of density by the volume is constant: p,.V = const. Because the
comoving volume scales as V' o< a®, where a is the expansion parameter, the density scales
as pyr < a~°. The normalization in this relation is a free parameter to be determined by
observations.

If €2,,0 is the contribution of the total mass of dark matter and baryons at z = 0, than

we can write the density of the matter at any redshift as:
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1.3 Relativistic particles

The situation is different for the relativistic particles. Their number-density and energy
density are not preserved and is defined by the temperature of the Universe T and by the
nature of the particles. For example, for photons the number density n., and the energy

density p.c* are:
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Here ((z) is the Riemann function: {(3) =~ 1.202. The specific entropy of radiation is s =

(4/3)a,T°. Thus, the entropy of radiation and the number of photons are proportional one

to the other.



Temperature of mass-less neutrinos is different from the temperature of photons. This
is related with events that happened when the Universe was ~ 1sec old. At earlier stages
the neutrinos were in nuclear equilibrium with other particles thanks to reactions such
as € + & <> V. + V.. As the Universe was expanding, the density and temperature were
decreasiong. At some moment the rate of those reactions became too small to keep neutrinos
in equilibrium, and neutrinos became decoupled from the rest of the particles. That happened
when the temperature of the Universe dropped to 7' ~ 1MeV. The electrons and positrons
were still relativistic because their mass 0.5MeV is smaller than the temperature 7. This
means that the number and density of electron-positron pairs was extremely large - about

twice larger than those of photons. As the Universe was further expanding and cooling the

temperature dropped below 0.5MeV and electron-positron pairs annihilated (e +e — v+ )
depositing their tremendous energy into photons. As the result, the temperature of photons
did not drop as much as it would have been otherwise. The final outcome of these events

produced difference in temperatures of neutrinos and photons:
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We thus expect that at present time the temperature of neutrinos should be 7, = 0.71 %

2.7T3K = 1.95K.



After electron-positron annihilation there were no events that would modify the entropy

(and, thus comoving number-density) of photons. The temperature was declining as T oc a™!.

Because for relativistic particles p o< T*, the density of relativistic particles (photons

neutrinos) declines as p,q o< a™*.

Following the same notations as for the non-relativistic particles, we can write the density

of relativistic particles at t > 1sec as:
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Note, however, that we do know the normalization in this expressing because we know the

temperature of CMB radiation.

1.4 Dark energy

We do not know what is the nature of the dark energy — the component, that dominates
the expansion of the Universe at low redshifts. All observational results are consistent with
the assumption the effective density of the dark energy does not change as the Universe

expands. Thus we can write its contribution as:
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1.5 Friedmann equation

Combining these results we can finally write the Friedmann equation in the following form:
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