fftpack5

NAME

FFTPACK5 - a FORTRAN library of fast Fourier transforms

SYNOPSIS

Complex Transform Routines

CFFT1I 1D complex initialization
CFFT1B 1D complex backward
CFFT1F 1D complex forward

CFFT2I	2D complex initialization
CFFT2B	2D complex backward
CFFT2F	2D complex forward

CFFTMI
multiple complex initialization
CFFTMB multiple complex backward
CFFTMF multiple complex forward

Real Transform Routines

$\underline{R F F T 1 I}$	1D real initialization
$\underline{R F F T 1 B}$	1D real backward
$\underline{R F F T 1 F}$	1D real forward
$\underline{\text { RFFT2I }}$	2D real initialization
$\underline{R F F T 2 B}$	2D real backward
$\underline{R F F T 2 F}$	2D real forward

RFFTMI multiple real initialization
RFFTMB multiple real backward

RFFTMF multiple real forward

Real Cosine Transform Routines

COST1I	1D real cosine initialization
$\underline{\text { COST1B }}$	1D real cosine backward
$\underline{\text { COST1F }}$	1D real cosine forward
COSTMI	multiple real cosine initialization COSTMB COSTMF

Real Sine Transform Routines

SINT1I 1D real sine initialization
SINT1B 1D real sine backward
SINT1F 1D real sine forward

SINTMI multiple real sine initialization
SINTMB multiple real sine backward
SINTMF multiple real sine forward

Real Quarter-Cosine Transform Routines

$\underline{C O S Q 1 I}$	1D real quarter-cosine initialization
$\underline{\text { COSQ1B }}$	1D real quarter-cosine backward
$\underline{\text { COSQ1F }}$	1D real quarter-cosine forward
$\underline{C O S Q M I}$	multiple real quarter-cosine initialization
$\underline{C O S Q M B}$	multiple real quarter-cosine backward
$\underline{C O S Q M F}$	multiple real quarter-cosine forward

$\underline{\text { SINQ1I }}$	1D real quarter-sine initialization
$\underline{\text { SINQ1B }}$	1D real quarter-sine backward
$\underline{\text { SINQ1F }}$	1D real quarter-sine forward
$\underline{\text { SINQMI }}$	
$\underline{\text { SINQMB }}$	multiple real quarter-sine initialization SINQMF

DESCRIPTION

Library FFTPACK5 contains 1D, 2D, and multiple fast Fourier subroutines, written in Fortran 77, for transforming real and complex data, real even and odd wave data, and real even and odd quarter-wave data. All of the FFTPACK5 routines listed above are grouped in triplets e.g. \{CFFT1I, CFFT1F, CFFT1B $\}$. The suffix I denotes initialize, F denotes forward (as in forward transform) and B denotes backward. In an application program, before calling B or F routines for the first time, or before calling them with a different length, users must initialize an array by calling the I routine of the appropriate pair or triplet. Note that I routines need not be called each time before a B or F routine is called.

All of the transform routines in FFTPACK5 are normalized.

Error messages are written to unit 6 by routine XERFFT. The standard version of XERFFT issues an error message and halts execution, so that no FFTPACK routine will return to the calling program with error return IER different than zero. Users may consider modifying the STOP statement in order to call system-specific exception-handling facilities.

FFTPACK5 is written in standard Fortran 77 except for several instances where arrays of type REAL or COMPLEX are passed to a subroutine and used as a different type.

References

(1) Vectorizing the Fast Fourier Transforms, by Paul Swarztrauber, Parallel Computations, G. Rodrigue, ed., Academic Press, New York 1982.
(2) Fast Fourier Transforms Algorithms for Vector Computers, by Paul Swarztrauber, Parallel Computing, (1984) pp.45-63.

Return to Main Contents

NAME

CFFT1I - initialization routine for CFFT1B and CFFT1F

SYNOPSIS

```
SUBROUTINE CFFT1I (N, WSAVE, LENSAV, IER)
INTEGER N, LENSAV, IER
REAL WSAVE (LENSAV)
```


DESCRIPTION

```
FFTPACK 5.0 subroutine CFFT1I initializes array WSAVE for use in
its companion routines CFFT1B and CFFT1F. Routine CFFT1I must
be called before the first call to CFFT1B or CFFT1F, and after
whenever the value of integer N changes.
Input Arguments
\(N \quad\) Integer length of the sequence to be transformed. The transform is most efficient when \(N\) is a product of small primes.
LENSAV Integer dimension of WSAVE array. LENSAV must be at least \(2 * N+\operatorname{INT}(L O G(R E A L(N)))+4\).
```

Output Arguments

WSAVE Real work array with dimension LENSAV, containing the prime factors of N and also containing certain trigonometric values which will be used in routines CFFT1B or CFFT1F.

IER $\quad=0$ successful exit
$=2$ input parameter LENSAV not big enough

cfft1b

Return to Main Contents

NAME

CFFT1B - complex backward fast Fourier transform

SYNOPSIS

```
SUBROUTINE CFFT1B (N, INC, C, LENC, WSAVE, LENSAV,
1 WORK, LENWRK, IER)
\begin{tabular}{ll} 
INTEGER & N, INC, LENC, LENSAV, LENWRK, IER \\
COMPLEX & \(\mathrm{C}(\) LENC \()\) \\
REAL & WSAVE (LENSAV), WORK (LENWRK)
\end{tabular}
```


DESCRIPTION

FFTPACK 5.0 routine CFFT1B computes the one-dimensional Fourier transform of a single periodic sequence within a complex array. This transform is referred to as the backward transform or Fourier synthesis, transforming the sequence from spectral to physical space.

This transform is normalized since a call to CFFT1B followed by a call to CFFT1F (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
$\mathrm{N} \quad$ Integer length of the sequence to be transformed. The transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array C, of two consecutive elements within the sequence to be transformed.

C Complex array of length LENC containing the sequence to be transformed.

LENC Integer dimension of C array. LENC must be at least INC*(N-1) + 1 .

WSAVE Real work array with dimension LENSAV. WSAVE's contents must be initialized with a call to subroutine CFFT1I before the first call to routine CFFT1F or CFFT1B for a given transform length N. WSAVE's contents may be re-used for subsequent calls to CFFT1F and CFFT1B with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(R E A L(N)))+4$.

WORK Real work array of dimension LENWRK.
LENWRK Integer dimension of WORK array. LENWRK must be at least $2 * N$.

Output Arguments
C For index $\mathrm{J} *$ INC+1 where $\mathrm{J}=0, \ldots, \mathrm{~N}-1$,

$$
\begin{aligned}
& C(J * I N C+1)= \\
& N-1 \\
& \text { SUM } C(K * I N C+1) * \operatorname{EXP}(I * J * K * 2 * P I / N) \\
& K=0
\end{aligned}
$$

where $\mathrm{I}=\mathrm{SQRT}(-1)$.
At other indices, the output value of C does not differ from input.

IER = 0 successful exit
= 1 input parameter LENC not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=20$ input error returned by lower level routine

cfft1f

Return to Main Contents

NAME

CFFT1F - complex forward fast Fourier transform

SYNOPSIS

```
SUBROUTINE CFFT1F (N, INC, C, LENC, WSAVE, LENSAV,
1
    WORK, LENWRK, IER)
INTEGER \(N\), INC, LENC, LENSAV, LENWRK, IER
COMPLEX C(LENC)
REAL WSAVE (LENSAV), WORK(LENWRK)
```


DESCRIPTION

FFTPACK 5.0 routine CFFT1F computes the one-dimensional Fourier transform of a single periodic sequence within a complex array. This transform is referred to as the forward transform or Fourier analysis, transforming the sequence from physical to spectral space.

This transform is normalized since a call to CFFT1F followed by a call to CFFT1B (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
$N \quad$ Integer length of the sequence to be transformed. The transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array C, of two consecutive elements within the sequence to be transformed.

C Complex array of length LENC containing the sequence to be transformed.

LENC Integer dimension of C array. LENC must be at least INC*(N-1) + 1 .

WSAVE Real work array with dimension LENSAV. WSAVE's contents must be initialized with a call to subroutine CFFT1I before the first call to routine CFFT1F or CFFT1B for a given transform length N. WSAVE's contents may be re-used for subsequent calls to CFFT1F and CFFT1B with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * \mathrm{~N}+\mathrm{INT}(\mathrm{LOG}(\operatorname{REAL}(\mathrm{N})))+4$.

WORK Real work array of dimension LENWRK.
LENWRK Integer dimension of WORK array. LENWRK must be at least $2 * N$.

Output Arguments
C For index J*INC+1 where J=0,...,N-1 (that is, for the Jth element of the sequence),

$$
\begin{aligned}
& C(J * I N C+1)= \\
& N-1 \\
& \text { SUM } C(K * I N C+1) * \operatorname{EXP}(-I * J * K * 2 * P I / N) \\
& K=0
\end{aligned}
$$

where $\mathrm{I}=$ SQRT (-1).
At other indices, the output value of C does not differ from input.

IER = 0 successful exit
= 1 input parameter LENC not big enough
$=2$ input parameter LENSAV not big enough
= 3 input parameter LENWRK not big enough
$=20$ input error returned by lower level routine

cfft2i

Return to Main Contents

NAME

CFFT2I - initialization routine for CFFT2B, CFFT2F

SYNOPSIS

```
SUBROUTINE CFFT2I (L, M, WSAVE, LENSAV, IER)
INTEGER L, M, LENSAV, IER
REAL WSAVE (LENSAV)
```


DESCRIPTION

FFTPACK 5.0 routine CFFT2I initializes real array WSAVE for use in its companion routines CFFT2F and CFFT2B for computing twodimensional fast Fourier transforms of complex data. Prime factorizations of L and M, together with tabulations of the trigonometric functions, are computed and stored in array WSAVE.

Input Arguments

L Integer number of elements to be transformed in the first dimension. The transform is most efficient when L is a product of small primes.

M Integer number of elements to be transformed in the second dimension. The transform is most efficient when M is a product of small primes.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 *(L+M)+\operatorname{INT}(L O G(R E A L(L)))+\operatorname{INT}(L O G(R E A L(M)))+8$.

WSAVE Real work array with dimension LENSAV, containing the prime factors of L and M, and also containing certain trigonometric values which will be used in routines CFFT2B or CFFT2F.

WSAVE Real work array with dimension LENSAV. The WSAVE array must be initialized with a call to subroutine CFFT2I before the first call to CFFT2B or CFFT2F, and thereafter whenever the values of L, M or the contents of array WSAVE change. Using different WSAVE arrays for different transform lengths or types in the same program may reduce computation costs because the array contents can be re-used.

IER Integer error return
$=0$ successful exit
$=2$ input parameter LENSAV not big enough
$=20$ input error returned by lower level routine

cfft2b

Return to Main Contents

NAME

CFFT2B - complex, two-dimensional backward fast Fourier transform

SYNOPSIS

```
SUBROUTINE CFFT2B (LDIM, L, M, C, WSAVE, LENSAV,
1
                                WORK, LENWRK, IER)
INTEGER L, M, LDIM, LENSAV, LENWRK, IER
COMPLEX C (LDIM, M)
REAL WSAVE (LENSAV), WORK (LENWRK)
```


DESCRIPTION

FFTPACK 5.0 routine CFFT2B computes the two-dimensional discrete Fourier transform of a complex periodic array. This transform is known as the backward transform or Fourier synthesis, transforming from spectral to physical space.

Routine CFFT2B is normalized, in that a call to CFFT2B followed by a call to CFFT2F (or vice-versa) reproduces the original array within roundoff error.

Input Arguments

LDIM Integer first dimension of two-dimensional complex array C.

L Integer number of elements to be transformed in the first dimension of the two-dimensional complex array C. The value of L must be less than or equal to that of LDIM. The transform is most efficient when L is a product of small primes.

M Integer number of elements to be transformed in the second dimension of the two-dimensional complex array C. The transform is most efficient when M is a product of small primes.

C Complex array of two dimensions containing the (L,M) subarray to be transformed. C's first dimension is LDIM, its second dimension must be at least M.

WSAVE Real work array with dimension LENSAV. WSAVE's contents must be initialized with a call to subroutine CFFT2I before the first call to routine CFFT2F or CFFT2B with transform lengths L and M. WSAVE's contents may be re-used for subsequent calls to CFFT2F and CFFT2B with the same transform lengths L and M.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 *(\mathrm{~L}+\mathrm{M})+\operatorname{INT}(\mathrm{LOG}(\operatorname{REAL}(\mathrm{L})))+\operatorname{INT}(\mathrm{LOG}(\operatorname{REAL}(\mathrm{M})))+8$.

WORK Real work array.

LENWRK Integer dimension of WORK array. LENWRK must be at least $2 *$ L*M.

Output Arguments

C Complex output array. For purposes of exposition, assume the index ranges of array C are defined by $C(0: L-1,0: M-1)$.

For $I=0, \ldots, L-1$ and $J=0, \ldots, M-1$, the $C(I, J) ' s$ are given in the traditional aliased form by

$$
C(I, J)=\begin{array}{ll}
L-1 & M-1 \\
\text { SUM } & \text { SUM } \\
\mathrm{L} 1=0 & M 1=0
\end{array} C(\mathrm{~L} 1, \mathrm{M} 1) *
$$

$$
\operatorname{EXP}(\operatorname{SQRT}(-1) * 2 * P I *(I * L 1 / L+J * M 1 / M))
$$

And in unaliased form, the $C(I, J)$'s are given by

$$
\begin{aligned}
& C(I, J)=\begin{array}{ll}
\text { LF } & \text { MF } \\
\text { SUM } & \text { SUM }
\end{array} \quad C(L 1, M 1, K 1) \text { * } \\
& \mathrm{L} 1=\mathrm{LS} \quad \mathrm{M} 1=\mathrm{MS} \\
& \operatorname{EXP}(S Q R T(-1) * 2 * P I *(I * L 1 / L+J * M 1 / M))
\end{aligned}
$$

where

$$
\begin{array}{lll}
\mathrm{LS}=-\mathrm{L} / 2 & \text { and } \mathrm{LF}=\mathrm{L} / 2-1 & \text { if } \mathrm{L} \text { is even; } \\
\mathrm{LS}=-(\mathrm{L}-1) / 2 \text { and } \mathrm{LF}=(\mathrm{L}-1) / 2 & \text { if } \mathrm{L} \text { is odd; } \\
\mathrm{MS}=-\mathrm{M} / 2 & \text { and } \mathrm{MF}=\mathrm{M} / 2-1 & \text { if } \mathrm{M} \text { is even; } \\
\mathrm{MS}=-(\mathrm{M}-1) / 2 \text { and } \mathrm{MF}=(\mathrm{M}-1) / 2 \text { if } \mathrm{M} \text { is odd; }
\end{array}
$$

and

$$
\begin{aligned}
& C(L 1, M 1)=C(L 1+L, M 1) \text { if L1 is zero or negative; } \\
& C(L 1, M 1)=C(L 1, M 1+M) \text { if M1 is zero or negative; }
\end{aligned}
$$

The two forms give different results when used to interpolate between elements of the sequence.

IER Integer error return
$=0$ successful exit
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=5$ input parameter $\mathrm{L}>\mathrm{LDIM}$
$=20$ input error returned by lower level routine

cfft2f

Return to Main Contents

NAME

CFFT2F - complex, two-dimensional forward fast Fourier transform

SYNOPSIS

SUBROUTINE CFFT2F (LDIM, L, M, C, WSAVE, LENSAV,

INTEGER L, M, LDIM, LENSAV, LENWRK, IER
COMPLEX C(LDIM,M)
REAL WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine CFFT2F computes the two-dimensional discrete Fourier transform of a complex periodic array. This transform is known as the forward transform or Fourier analysis, transforming from physical to spectral space.

Routine CFFT2F is normalized, in that a call to CFFT2F followed by a call to CFFT2B (or vice-versa) reproduces the original array within roundoff error.

Input Arguments

LDIM Integer first dimension of two-dimensional complex array C.

L Integer number of elements to be transformed in the first
dimension of the two-dimensional complex array C. The value of L must be less than or equal to that of LDIM. The transform is most efficient when L is a product of small primes.

M Integer number of elements to be transformed in the second dimension of the two-dimensional complex array C. The transform is most efficient when M is a product of small primes.

C Complex array of two dimensions containing the (L,M) subarray to be transformed. C's first dimension is LDIM, its second dimension must be at least M.

WSAVE Real work array with dimension LENSAV. WSAVE's contents must be initialized with a call to subroutine CFFT2I before the first call to routine CFFT2F or CFFT2B with transform lengths L and M. WSAVE's contents may be re-used for subsequent calls to CFFT2F and CFFT2B having those same transform lengths.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 *(L+M)+\operatorname{INT}(L O G(\operatorname{REAL}(L)))+\operatorname{INT}(L O G(R E A L(M)))+8$.

WORK Real work array.

LENWRK Integer dimension of WORK array. LENWRK must be at least $2 * L * M$ 。

Output Arguments

C Complex output array. For purposes of exposition, assume the index ranges of array C are defined by C ($0: L-1,0: M-1)$.

For $I=0, \ldots, L-1$ and $J=0, \ldots, M-1$, the $C(I, J)$'s are given in the traditional aliased form by

$$
C(I, J)=\quad 1 /(L * M) * \begin{array}{cc}
\mathrm{L}-1 & \mathrm{M}-1 \\
\mathrm{SUM} & \mathrm{SUM} \\
\mathrm{~L} 1=0 & \mathrm{M} 1=0
\end{array} \mathrm{C}(\mathrm{~L} 1, \mathrm{M} 1) *
$$

$$
\operatorname{EXP}(-\operatorname{SQRT}(-1) \star 2 \star \mathrm{PI}(\mathrm{I} \star \mathrm{~L} 1 / L+J \star \mathrm{M} 1 / \mathrm{M}))
$$

And in unaliased form, the $C(I, J)$'s are given by
where

$$
\begin{array}{lll}
\mathrm{LS}=-\mathrm{L} / 2 & \text { and } \mathrm{LF}=\mathrm{L} / 2-1 & \text { if } \mathrm{L} \text { is even; } \\
\mathrm{LS}=-(\mathrm{L}-1) / 2 \text { and } \mathrm{LF}=(\mathrm{L}-1) / 2 & \text { if } \mathrm{L} \text { is odd; } \\
\mathrm{MS}=-\mathrm{M} / 2 & \text { and } \mathrm{MF}=\mathrm{M} / 2-1 & \text { if } \mathrm{M} \text { is even; } \\
\mathrm{MS}=-(\mathrm{M}-1) / 2 \text { and } \mathrm{MF}=(\mathrm{M}-1) / 2 & \text { if } \mathrm{M} \text { is odd; }
\end{array}
$$

and

$$
\begin{aligned}
& C(L 1, M 1)=C(L 1+L, M 1) \text { if } L 1 \text { is zero or negative; } \\
& C(L 1, M 1)=C(L 1, M 1+M) \text { if M1 is zero or negative; }
\end{aligned}
$$

The two forms give different results when used to interpolate between elements of the sequence.

IER Integer error return
$=0$ successful exit
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=5$ input parameter $L>L D I M$
$=20$ input error returned by lower level routine

$$
\begin{aligned}
& \text { LF MF } \\
& C(I, J)=1 /(L * M) * S U M \quad S U M \quad C(L 1, M 1) * \\
& \text { L1 }=\mathrm{LS} \text { M1 }=\mathrm{MS} \\
& \operatorname{EXP}(-\operatorname{SQRT}(-1) * 2 * P I *(I * L 1 / L+J * M 1 / M))
\end{aligned}
$$

cfftmi

Return to Main Contents

NAME

CFFTMI - initialization routine for CFFTMB and CFFTMF

SYNOPSIS

```
SUBROUTINE CFFTMI (N, WSAVE, LENSAV, IER)
INTEGER N, LENSAV, IER
REAL WSAVE (LENSAV)
```


DESCRIPTION

FFTPACK 5.0 subroutine CFFTMI initializes array WSAVE for use in its companion routines CFFTMB and CFFTMF. Routine CFFTMI must be called before the first call to CFFTMB or CFFTMF, and after whenever the value of integer N changes.

Input Arguments

N Integer length of each sequence to be transformed. The transform is most efficient when N is a product of small primes.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(R E A L(N)))+4$.

Output Arguments

WSAVE Real work array with dimension LENSAV, containing the prime factors of N and also containing certain trigonometric values which will be used in routines CFFTMB or CFFTMF.

```
IER = 0 successful exit
    = 2 input parameter LENSAV not big enough
```


cfftmb

Return to Main Contents

NAME

CFFTMB - complex, multiple backward fast Fourier transform

SYNOPSIS

```
SUBROUTINE CFFTMB (LOT, JUMP, N, INC, C, LENC, WSAVE, LENSAV,
WORK, LENWRK, IER)
```

1
INTEGER LOT, JUMP, N, INC, LENC, LENSAV, LENWRK, IER
COMPLEX C (LENC)
REAL WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine CFFTMB computes the one-dimensional Fourier transform of multiple periodic sequences within a complex array. This transform is referred to as the backward transform or Fourier synthesis, transforming the sequences from spectral to physical space.

This transform is normalized since a call to CFFTMF followed by a call to CFFTMB (or vice-versa) reproduces the original array within roundoff error.

Input Arguments

LOT Integer number of sequences to be transformed within array C .

JUMP Integer increment between the locations, in array C, of the first elements of two consecutive sequences to be transformed.

Integer length of each sequence to be transformed. The transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array C, of two consecutive elements within the same sequence to be transformed.

C Complex array containing LOT sequences, each having length N, to be transformed. C can have any number of dimensions, but the total number of locations must be at least LENC.

LENC Integer dimension of C array. LENC must be at least (LOT-1)*JUMP + INC* (N-1) + 1 .

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine CFFTMI before the first call to routine CFFTMF or CFFTMB for a given transform length N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(R E A L(N)))+4$.

WORK Real work array of dimension LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least $2 * L O T * N$.

Output Arguments

For index L*JUMP+J*INC+1 where $J=0, \ldots, N-1$ and L=0,..., LOT-1, (that is, for the Jth element of the Lth sequence),

$$
\begin{aligned}
& C(L \star J U M P+J \star I N C+1)= \\
& N-1 \\
& \text { SUM } C(L * J U M P+K * I N C+1) \star E X P(I * J * K * 2 * P I / N)
\end{aligned}
$$

$$
K=0
$$

where $\mathrm{I}=$ SQRT (-1).

At other indices, the output value of C does not differ from input.

IER $\quad=0$ successful exit
$=1$ input parameter LENC not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=4$ input parameters INC, JUMP, N,LOT are not consistent.

The parameters integers INC, JUMP, N and LOT are consistent if equality
I1*INC + J1*JUMP = I2*INC + J2*JUMP for I1,I2 < N and J1, J2 < LOT implies I1=I2 and J1=J2.

For multiple FFTs to execute correctly, input variables INC, JUMP, N and LOT must be consistent ... otherwise at least one array element mistakenly is transformed more than once.

cfftmf

Return to Main Contents

NAME

CFFTMF - complex, multiple forward fast Fourier transform

SYNOPSIS

```
SUBROUTINE CFFTMF (LOT, JUMP, N, INC, C, LENC, WSAVE, LENSAV,
WORK, LENWRK, IER)
```

1

INTEGER	LOT, JUMP, N, INC, LENC, LENSAV, LENWRK, IER
COMPLEX	C(LENC)
REAL	WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine CFFTMF computes the one-dimensional Fourier transform of multiple periodic sequences within a complex array. This transform is referred to as the forward transform or Fourier analysis, transforming the sequences from physical to spectral space.

This transform is normalized since a call to CFFTMF followed by a call to CFFTMB (or vice-versa) reproduces the original array within roundoff error.

Input Arguments

LOT Integer number of sequences to be transformed within array C.

JUMP Integer increment between the locations, in array C, of the first elements of two consecutive sequences to be transformed.

Integer length of each sequence to be transformed. The transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array C, of two consecutive elements within the same sequence to be transformed.

C Complex array containing LOT sequences, each having length N , to be transformed. C can have any number of dimensions, but the total number of locations must be at least LENC.

LENC Integer dimension of C array. LENC must be at least (LOT-1)*JUMP + INC*(N-1) + 1 .

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine CFFTMI before the first call to routine CFFTMF or CFFTMB for a given transform length N .

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(R E A L(N)))+4$.

WORK Real work array of dimension LENWRK.
LENWRK Integer dimension of WORK array. LENWRK must be at least 2*LOT*N.

Output Arguments
For index L*JUMP + J*INC +1 where J=0,...,N-1 and L=0,...,LOT-1, (that is, for the Jth element of the Lth sequence),

$$
\begin{aligned}
& C(L \star J U M P+J * I N C+1)= \\
& \text { N-1 } \\
& \text { SUM } C(L \star J U M P+K * I N C+1) * \operatorname{EXP}(-I * J \star K * 2 * P I / N)
\end{aligned}
$$

$$
K=0
$$

where $\mathrm{I}=$ SQRT (-1).

At other indices, the output value of C does not differ from input.

IER $\quad=0$ successful exit
$=1$ input parameter LENC not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=4$ input parameters INC, JUMP, N,LOT are not consistent.

The parameters integers INC, JUMP, N and LOT are consistent if equality
I1*INC + J1*JUMP = I2*INC + J2*JUMP for I1,I2 < N and J1, J2 < LOT implies I1=I2 and J1=J2.

For multiple FFTs to execute correctly, input variables INC, JUMP, N and LOT must be consistent ... otherwise at least one array element mistakenly is transformed more than once.

rfft1i

Return to Main Contents

NAME

RFFT1I - initialization routine for RFFT1B and RFFT1F

SYNOPSIS

```
SUBROUTINE RFFT1I (N, WSAVE, LENSAV, IER)
INTEGER N, LENSAV, IER
REAL WSAVE (LENSAV)
```


DESCRIPTION

FFTPACK 5.0 subroutine RFFT1I initializes array WSAVE for use in its companion routines RFFT1B and RFFT1F. The prime factorization of N together with a tabulation of the trigonometric functions are computed and stored in array WSAVE. Separate WSAVE arrays are required for different values of N.

Input Arguments
$N \quad$ Integer length of the sequence to be transformed. The transform is most efficient when N is a product of small primes.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $\mathrm{N}+\operatorname{INT}(\operatorname{LOG}(\operatorname{REAL}(\mathrm{N})))+4$.

Output Arguments

WSAVE Real work array with dimension LENSAV, containing the prime factors of N and also containing certain trigonometric values which will be used in routines RFFT1B or RFFT1F.

IER $\quad=0$ successful exit
$=2$ input parameter LENSAV not big enough

rfft1b

Return to Main Contents

NAME

RFFT1B - real backward fast Fourier transform

SYNOPSIS

SUBROUTINE RFFT1B (N, INC, R, LENR, WSAVE, LENSAV, WORK, LENWRK, IER)

INTEGER N, INC, LENR, LENSAV, LENWRK, IER
REAL R(LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine RFFT1B computes the one-dimensional Fourier transform of a periodic sequence within a real array. This is referred to as the backward transform or Fourier synthesis, transforming the sequence from spectral to physical space.

This transform is normalized since a call to RFFT1B followed by a call to RFFT1F (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
$\mathrm{N} \quad$ Integer length of the sequence to be transformed. The transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the sequence.

R Real array of length LENR containing the sequence to be transformed.

LENR Integer dimension of R array. LENR must be at least INC* $(N-1)+1$.

WSAVE Real work array o length LENSAV. WSAVE's contents must be initialized with a call to subroutine RFFTII before the first call to routine RFFT1F or RFFT1B for a given transform length N .

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $\mathrm{N}+\operatorname{INT}(\mathrm{LOG}(\operatorname{REAL}(\mathrm{N})))+4$.

WORK Real work array of dimension LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at N.

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by $R(0:(N-1) * I N C)$.

The output values of R are written over the input values. If N is even, set $N H=N / 2-1$; then for $J=0, \ldots, N-1$

$$
\begin{aligned}
& R(J * I N C)=R(0)+ \\
& {[(-1) * * J * R((N-1) * I N C)]} \\
& \mathrm{NH} \\
& +\quad \operatorname{SUM} \quad \mathrm{R}((2 * \mathrm{~N} 1-1) * \mathrm{INC}) * \operatorname{COS}(\mathrm{~J} * \mathrm{~N} 1 * 2 * \mathrm{PI} / \mathrm{N}) \\
& \text { N1 }=1 \\
& \mathrm{NH} \\
& +\quad \text { SUM } R(2 * N 1 * I N C) * S I N(J * N 1 * 2 * P I / N) \\
& \mathrm{N} 1=1
\end{aligned}
$$

If N is odd, set $N H=(N-1) / 2$ and define R as above, except remove the expression in square brackets [].

IER \quad	Integer error return
	$=0$ successful exit
	$=1$ input parameter LENR not big enough
	$=2$ input parameter LENSAV not big enough
	$=3$ input parameter LENWRK not big enough

rfft1f

Return to Main Contents

NAME

RFFT1F - real backward fast Fourier transform

SYNOPSIS

SUBROUTINE RFFT1F (N, INC, R, LENR, WSAVE, LENSAV, WORK, LENWRK, IER)

INTEGER N, INC, LENR, LENSAV, LENWRK, IER
REAL R(LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine RFFT1F computes the one-dimensional Fourier transform of a periodic sequence within a real array. This is referred to as the forward transform or Fourier analysis, transforming the sequence from physical to spectral space.

This transform is normalized since a call to RFFT1F followed by a call to RFFT1B (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
$\mathrm{N} \quad$ Integer length of the sequence to be transformed. The transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the sequence.

R Real array of length LENR containing the sequence to be transformed.

LENR Integer dimension of R array. LENR must be at least INC* (N-1) + 1 .

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine RFFT1I before the first call to routine RFFT1F or RFFT1B for a given transform length N .

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $\mathrm{N}+\operatorname{INT}(\mathrm{LOG}(\operatorname{REAL}(\mathrm{N})))+4$.

WORK Real work array of dimension LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at N.

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by $R(0:(N-1) * I N C)$.

Then

$$
R(0)=\quad \begin{aligned}
& \mathrm{N}-1 \\
& \mathrm{SUM} \\
& \mathrm{~N} 1=0
\end{aligned} \mathrm{R}(\mathrm{~N} 1 * \mathrm{INC}) / \mathrm{N}
$$

If N is even, set $N H=N / 2-1$; if N is odd set $N H=(N-1) / 2$;
then for $J=1, \ldots, N H$

$$
\begin{aligned}
& R((2 * J-1) * I N C)= \\
& 2 \cdot * S U M \quad(R(N 1 * I N C) * \operatorname{COS}(J * N 1 * 2 * P I / N) / N \\
& N 1=0
\end{aligned}
$$

and
$R(2 * J * I N C)=$

$$
\begin{gathered}
\begin{array}{c}
\mathrm{N}-1 \\
\text { 2. } \\
\mathrm{SUM} \\
\mathrm{~N} 1=0
\end{array}
\end{gathered} \quad(\mathrm{R}(\mathrm{~N} 1 * \mathrm{INC}) * \mathrm{SIN}(\mathrm{~J} * \mathrm{~N} 1 * 2 * \mathrm{PI} / \mathrm{N}) / \mathrm{N}
$$

Also if N is even then

$$
\begin{aligned}
& R((\mathrm{~N}-1) * \mathrm{INC})= \\
& \\
& \quad \mathrm{N}-1 \\
& \\
& \\
& \\
& \mathrm{SUM} \quad(-1) * * \mathrm{~N} 1 * \mathrm{R}(\mathrm{~N} 1 * \mathrm{INC}) / \mathrm{N}
\end{aligned}
$$

IER \quad	Integer error return
	$=0$ successful exit
	$=1$ input parameter LENR not big enough
	$=2$ input parameter LENSAV not big enough
	$=3$ input parameter LENWRK not big enough

rfft2i

Return to Main Contents

NAME

RFFT2I - initialization routine for RFFT2B and RFFT2F

SYNOPSIS

SUBROUTINE	RFFT2I (L, M, WSAVE, LENSAV, IER)	
INTEGER	L, M, LENSAV, IER	
REAL	WSAVE (LENSAV)	

DESCRIPTION

FFTPACK 5.0 routine RFFT2I initializes real array WSAVE for use in its companion routines RFFT2F and RFFT2B for computing the twodimensional fast Fourier transform of real data. Prime factorizations of L and M, together with tabulations of the trigonometric functions, are computed and stored in array WSAVE. RFFT2I must be called prior to the first call to RFFT2F or RFFT2B. Separate WSAVE arrays are required for different values of L or M.

Input Arguments

L Integer number of elements to be transformed in the first dimension. The transform is most efficient when L is a product of small primes.

M Integer number of elements to be transformed in the second dimension. The transform is most efficient when M is a product of small primes.

LENSAV Integer number of elements in the WSAVE array. LENSAV must be at least $L+M+\operatorname{INT}(\operatorname{LOG}(\operatorname{REAL}(L)))+\operatorname{INT}(\operatorname{LOG}(\operatorname{REAL}(M)))+8$.

WSAVE Real work array with dimension LENSAV, containing the prime factors of L and M, and also containing certain trigonometric values which will be used in routines RFFT2B or RFFT2F.

IER Integer error return
$=0$ successful exit
$=2$ input parameter LENSAV not big enough
$=20$ input error returned by lower level routine

rfft2b

Return to Main Contents

NAME

RFFT2B - complex to real, two-dimensional backward fast Fourier transform

SYNOPSIS

SUBROUTINE RFFT2B (LDIM, L, M, R, WSAVE, LENSAV, WORK, LENWRK, IER) INTEGER LDIM, L, M, LENSAV, LENWRK, IER
REAL R(LDIM,M), WSAVE(LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine RFFT2B computes the two-dimensional discrete Fourier transform of the complex Fourier coefficients a real periodic array. This transform is known as the backward transform or Fourier synthesis, transforming from spectral to physical space.

Routine RFFT2B is normalized: a call to RFFT2B followed by a call to RFFT2F (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
LDIM Integer first dimension of the two-dimensional real array R, which must be at least $2 *(L / 2+1)$.

L Integer number of elements to be transformed in the first dimension of the two-dimensional real array R. The value of L must be less than or equal to that of LDIM. The transform is most efficient when L is a product of small primes.
dimension of the two-dimensional real array R. The transform is most efficient when M is a product of small primes.
$R \quad$ Real array of two dimensions containing the $L / 2+1-b y-M$ complex subarray of spectral coefficients. R's first dimension is LDIM and its second dimension must be at least as large as M.

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine RFFT2I before the first call to routine RFFT2F or RFFT2B with lengths L and M. WSAVE's contents may be re-used for subsequent calls to RFFT2F and RFFT2B with the same transform lengths L and M.

LENSAV Integer number of elements in the WSAVE array. LENSAV must be at least $L+M+\operatorname{INT}(\operatorname{LOG}(\operatorname{REAL}(L)))+\operatorname{INT}(\operatorname{LOG}(\operatorname{REAL}(M)))+8$.

WORK Real array of dimension LENWRK, where LENWRK is defined below. WORK provides workspace, and its contents need not be saved between calls to routines RFFT2B and RFFT2F.

LENWRK Integer number of elements in the WORK array. LENWRK must be at least LDIM*M.

Output Arguments

$R \quad$ Real output array R of size LDIM-by-M, where LDIM is at least L. For purposes of exposition, assume the index ranges of array R are defined by $R(0: L-1,0: M-1)$, and the complex Fouier coefficient array by C(0:L/2,0:M-2).

$$
\begin{aligned}
& R(I, J)=\begin{array}{ll}
L / 2 & M-1 \\
\mathrm{SUM} & \mathrm{SUM} \quad \mathrm{C}(\mathrm{~L} 1, \mathrm{M} 1) \\
\mathrm{L} 1=0 & \mathrm{M} 1=0
\end{array} \\
& \star \operatorname{EXP}(\operatorname{SQRT}(-1) * 2 * P I *(I * L 1 / L+J * M 1 / M))
\end{aligned}
$$

$$
L-1 \quad M-1
$$

$$
\begin{array}{rl}
\quad+\operatorname{SUM} & \operatorname{SUM} \operatorname{CONJ}(\mathrm{C}(\mathrm{~L} 1, \mathrm{M} 1)) \\
\mathrm{L} 1=\mathrm{L} / 2+1 & \mathrm{M} 1=0 \\
& * \operatorname{EXP}(\operatorname{SQRT}(-1) * 2 * \mathrm{PI} *(\mathrm{I} *(\mathrm{~L}-\mathrm{L} 1) / \mathrm{L}+\mathrm{J} * \mathrm{M} 1 / \mathrm{M}))
\end{array}
$$

```
IER Integer error return
    = 0 successful exit
    = 2 input parameter LENSAV not big enough
    = 3 input parameter LENWRK not big enough
    = 6 input parameter LDIM < 2*(L/2+1)
    = 20 input error returned by lower level routine
```


rfft2f

Return to Main Contents

NAME

RFFT2F - real to complex, two-dimensional forward fast Fourier transform

SYNOPSIS

SUBROUTINE RFFT2F (LDIM, L, M, R, WSAVE, LENSAV, WORK, LENWRK, IER) INTEGER LDIM, L, M, LENSAV, LENWRK, IER
REAL R(LDIM,M), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine RFFT2F computes the two-dimensional discrete Fourier transform of a real periodic array. This transform is known as the forward transform or Fourier analysis, transforming from physical to spectral space.

Routine RFFT2F is normalized: a call to RFFT2F followed by a call to RFFT2B (or vice-versa) reproduces the original array within roundoff error.

Input Arguments

LDIM Integer first dimension of the two-dimensional real array R, which must be at least $2 *(L / 2+1)$.

L Integer number of elements to be transformed in the first dimension of the two-dimensional real array R. The value of L must be less than or equal to that of LDIM. The transform is most efficient when L is a product of small primes.
dimension of the two-dimensional real array R. The transform is most efficient when M is a product of small primes.
$R \quad$ Real array of two dimensions containing the L-by-M subarray to be transformed. R's first dimension is LDIM and its second dimension must be at least as large as M.

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine RFFT2I before the first call to routine RFFT2F or RFFT2B with lengths L and M. WSAVE's contents may be re-used for subsequent calls to RFFT2F and RFFT2B with the same transform lengths.

LENSAV Integer number of elements in the WSAVE array. LENSAV must be at least $L+M+\operatorname{INT}(L O G(R E A L(L)))+\operatorname{INT}(L O G(R E A L(M)))+8$.

WORK Real array of dimension LENWRK which is defined below. WORK provides workspace, and its contents need not be saved between calls to routines RFFT2F and RFFT2B.

LENWRK Integer number of elements in the WORK array. LENWRK must be at least LDIM*M.

Output Arguments
$R \quad$ Real output array of two dimensions. Only half of the Fourier spectrum of R is computed and stored as a L/2+1-by- M complex array. The L wavenumbers stored are 0 through L/2+1. The leading dimension of R LDIM must be at least 2*(L/2+1).

For purposes of exposition, assume the index ranges of a complex array C are defined by $C(0: L / 2,0: M-1)$.

For $I=0, \ldots, L / 2$ and $J=0, \ldots, M-1$, the $C(I, J)$'s are given in the traditional aliased form by

$$
\mathrm{L}-1 \quad \mathrm{M}-1
$$

$$
\begin{aligned}
& C(I, J)= 1 /(L * M) * \operatorname{SUM} \operatorname{SUM} C(L 1, M 1) * \\
& L 1=0 \text { M1 }=0
\end{aligned}
$$

The complex C(I,J), I=0,...,L/2 and J=0,...,M-1 are stored in the real array R as:

$$
\begin{aligned}
& \operatorname{Re}(C(I, J))=R(2 \star I+1, J+1) \\
& \operatorname{Im}(C(I, J))=R(2 * I+2, J+1) .
\end{aligned}
$$

```
IER Integer error return
= O successful exit
= 2 input parameter LENSAV not big enough
= 3 input parameter LENWRK not big enough
= 6 input parameter LDIM < 2*(L+1)
= 20 input error returned by lower level routine
```


rfftmi

Return to Main Contents

NAME

RFFTMI - initialization routine for RFFTMB and RFFTMF

SYNOPSIS

```
SUBROUTINE RFFTMI (N, WSAVE, LENSAV, IER)
INTEGER N, LENSAV, IER
REAL WSAVE (LENSAV)
```


DESCRIPTION

FFTPACK 5.0 subroutine RFFTMI initializes array WSAVE for use in its companion routines RFFTMB and RFFTMF. The prime factorization of N together with a tabulation of the trigonometric functions are computed and stored in array WSAVE. Separate WSAVE arrays are required for different values of N.

Input Arguments
$\mathrm{N} \quad$ Integer length of each sequence to be transformed. The transform is most efficient when N is a product of small primes.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $\mathrm{N}+\operatorname{INT}(\mathrm{LOG}(\operatorname{REAL}(\mathrm{N})))+4$.

Output Arguments

WSAVE Real work array with dimension LENSAV, containing the prime factors of N and also containing certain trigonometric values which will be used in routines RFFTMB or RFFTMF.

IER $\quad=0$ successful exit
$=2$ input parameter LENSAV not big enough

rfftmb

Return to Main Contents

NAME

RFFTMB - real, multiple backward fast Fourier transform

SYNOPSIS

SUBROUTINE RFFTMB (LOT, JUMP, N, INC, R, LENR, WSAVE, LENSAV,
1 WORK, LENWRK, IER)

INTEGER LOT, JUMP, N, INC, LENR, LENSAV, LENWRK, IER REAL R(LENR), WSAVE (LENSAV) ,WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine RFFTMB computes the one-dimensional Fourier transform of multiple periodic sequences within a real array. This transform is referred to as the backward transform or Fourier synthesis, transforming the sequences from spectral to physical space.

This transform is normalized since a call to RFFTMB followed by a call to RFFTMF (or vice-versa) reproduces the original array within roundoff error.

Input Arguments

LOT Integer number of sequences to be transformed within array R.

JUMP Integer increment between the locations, in array R, of the first elements of two consecutive sequences to be transformed.
transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the same sequence.
$R \quad$ Real array containing LOT sequences, each having length N. R can have any number of dimensions, but the total number of locations must be at least LENR.

LENR Integer dimension of R array. LENR must be at least (LOT-1)*JUMP + INC* $(N-1)+1$.

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine RFFTMI before the first call to routine RFFTMF or RFFTMB for a given transform length N .

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $\mathrm{N}+\mathrm{INT}(\mathrm{LOG}(\operatorname{REAL}(\mathrm{N})))+4$.

WORK Real work array of dimension LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least LOT*N.

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by R (0 : (LOT-1) *JUMP + ($\mathrm{N}-1$) *INC) .

The output values of R are written over the input values. If N is even, set $N H=N / 2-1$; then for $I=0, \ldots, L O T-1$ and $J=0, \ldots, N-1$

$$
\begin{gathered}
R(I * J U M P+J * I N C)=R(I * J U M P)+ \\
{[(-1) * * J * R(I * J U M P+(N-1) * I N C)]}
\end{gathered}
$$

$$
\begin{aligned}
& \\
&+ \text { NH } \\
& \text { SUM } R(I * J U M P+(2 * N 1-1) * I N C) * \operatorname{COS}(J * N 1 * 2 * P I / N) \\
& N 1=1 \\
&+\quad \begin{array}{l}
\text { NH } \\
\\
\\
\text { SUM } \\
N 1=1
\end{array}
\end{aligned}
$$

If N is odd, set $N H=(N-1) / 2$ and define R as above, except remove the expression in square brackets [].

IER \quad	Integer error return
	$=0$ successful exit
	$=1$ input parameter LENR not big enough
	$=2$ input parameter LENSAV not big enough
	$=3$ input parameter LENWRK not big enough
	4 input parameters INC, JUMP, N,LOT are not consistent.

The parameters integers INC, JUMP, N and LOT are consistent if equality
I1*INC + J1*JUMP = I2*INC + J2*JUMP for I1,I2<N and J1, J2 < LOT implies I1=I2 and J1=J2.

For multiple FFTs to execute correctly, input variables INC, JUMP, N and LOT must be consistent ... otherwise at least one array element mistakenly is transformed more than once.

Return to Main Contents

NAME

RFFTMF - real, multiple forward fast Fourier transform

SYNOPSIS

SUBROUTINE RFFTMF (LOT, JUMP, N, INC, R, LENR, WSAVE, LENSAV,
1 WORK, LENWRK, IER)

INTEGER LOT, JUMP, N, INC, LENR, LENSAV, LENWRK, IER REAL R(LENR), WSAVE (LENSAV) ,WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine RFFTMF computes the one-dimensional Fourier transform of multiple periodic sequences within a real array. This transform is referred to as the forward transform or Fourier analysis, transforming the sequences from physical to spectral space.

This transform is normalized since a call to RFFTMF followed by a call to RFFTMB (or vice-versa) reproduces the original array within roundoff error.

Input Arguments

LOT Integer number of sequences to be transformed within array R.

JUMP Integer increment between the locations, in array R, of the first elements of two consecutive sequences to be transformed.
transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the same sequence.
$R \quad$ Real array containing LOT sequences, each having length N. R can have any number of dimensions, but the total number of locations must be at least LENR.

LENR Integer dimension of R array. LENR must be at least (LOT-1)*JUMP + INC* (N-1) + 1 .

WSAVE Real work array o length LENSAV. WSAVE's contents must be initialized with a call to subroutine RFFTMI before the first call to routine RFFTMF or RFFTMB for a given transform length N .

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $\mathrm{N}+\operatorname{INT}(\mathrm{LOG}(\operatorname{REAL}(\mathrm{N})))+4$.

WORK Real work array of dimension LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least LOT*N.

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by $R(0:(L O T-1) * J U M P+(N-1) * I N C)$.

Then for $\mathrm{I}=0, \ldots, \mathrm{LOT}-1$

$$
R(I * J U M P)=\begin{aligned}
& N-1 \\
& S U M \\
& N 1=0
\end{aligned} R(I * J U M P+N 1 * I N C) / N
$$

If N is even, set $N H=N / 2-1 ; i f(N$ is odd set $N H=(N-1) / 2$; then for $J=1, \ldots, N H$
$R(I * J U M P+(2 * J-1) * I N C)=$
$\mathrm{N}-1$

$$
\begin{aligned}
& 2 . \star \operatorname{SUM} \quad(R(I * J U M P+N 1 * I N C) * \operatorname{COS}(J * N 1 * 2 * P I / N) / N \\
& N 1=0
\end{aligned}
$$

and

$$
\begin{aligned}
& R(I * J U M P+2 * J * I N C)= \\
& \begin{aligned}
& N-1 \\
& 2 \cdot * S U M(R(I * J U M P+N 1 * I N C) * \operatorname{SIN}(J * N 1 * 2 * P I / N) / N \\
& N 1=0
\end{aligned}
\end{aligned}
$$

Also if N is even then

$$
\begin{aligned}
& R(I * J U M P+(N-1) * I N C)= \\
& \text { N-1 } \\
& \text { SUM }(-1) * * N 1 * R(I * J U M P+N 1 * I N C) / N \\
& \text { N1 }=0
\end{aligned}
$$

IER Integer error return
$=0$ successful exit
$=1$ input parameter LENR not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=4$ input parameters INC, JUMP,N,LOT are not consistent.

The parameters integers INC, JUMP, N and LOT are consistent if equality
I1*INC + J1*JUMP = I2*INC + J2*JUMP for I1,I2 < N and $J 1, J 2<L O T$ implies $I 1=I 2$ and J1=J2.

For multiple FFTs to execute correctly, input variables INC, JUMP, N and LOT must be consistent ... otherwise at least one array element mistakenly is transformed more than once.

cost1i

Return to Main Contents

NAME

COST1I - initialization routine for COST1B and COST1F

SYNOPSIS

```
SUBROUTINE COST1I (N, WSAVE, LENSAV, IER)
INTEGER N, LENSAV, IER
REAL WSAVE (LENSAV)
```


DESCRIPTION

FFTPACK 5.0 subroutine COST1I initializes array WSAVE for use in its companion routines COST1F and COST1B. The prime factorization of N together with a tabulation of the trigonometric functions are computed and stored in array WSAVE. Separate WSAVE arrays are required for different values of N .

Input Arguments
$\mathrm{N} \quad$ Integer length of the sequence to be transformed. The transform is most efficient when $N-1$ is a product of small primes.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(R E A L(N)))+4$.

Output Arguments

WSAVE Real work array with dimension LENSAV, containing the prime factors of N and also containing certain trigonometric values which will be used in routines COST1B or COST1F.

```
IER Integer error return
= O successful exit
= 2 input parameter LENSAV not big enough
= 20 input error returned by lower level routine
```


cost1b

Return to Main Contents

NAME

COST1B - real backward cosine fast Fourier transform

SYNOPSIS

SUBROUTINE COST1B (N, INC, R, LENR, WSAVE, LENSAV, WORK, LENWRK, IER)

INTEGER N, INC, LENR, LENSAV, LENWRK, IER
REAL R(LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine COST1B computes the one-dimensional Fourier transform of an even sequence within a real array. This transform is referred to as the backward transform or Fourier synthesis, transforming the sequence from spectral to physical space.

This transform is normalized since a call to COST1B followed by a call to COST1F (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
$N \quad$ Integer length of the sequence to be transformed. The transform is most efficient when $N-1$ is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the sequence.

R Real array of length LENR containing the sequence to be transformed.

LENR Integer dimension of R array. LENR must be at least INC* $(\mathrm{N}-1)+1$ 。

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine COST1I before the first call to routine COST1F or COST1B for a given transform length N. WSAVE's contents may be re-used for subsequent calls to COST1F and COST1B with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(\operatorname{REAL}(N)))+4$.

WORK Real work array of dimension at least LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least $\mathrm{N}-1$.

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by $R(0:(N-1) * I N C)$.

The output values of R are written over the input values. For $J=0, \ldots, N-1$

$$
R(J * I N C)=
$$

$\mathrm{N}-1$
SUM R (N1*INC)*COS (J*N1*PI/(N-1))
$\mathrm{N} 1=0$

IER Integer error return
$=0$ successful exit
$=1$ input parameter LENR not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=20$ input error returned by lower level routine

cost1f

Return to Main Contents

NAME

COST1F - real backward cosine fast Fourier transform

SYNOPSIS

SUBROUTINE COST1F (N, INC, R, LENR, WSAVE, LENSAV, WORK, LENWRK, IER)

INTEGER N, INC, LENR, LENSAV, LENWRK, IER
REAL R(LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine COST1F computes the one-dimensional Fourier transform of an even sequence within a real array. This transform is referred to as the forward transform or Fourier analysis, transforming the sequence from physical to spectral space.

This transform is normalized since a call to COST1F followed by a call to COST1B (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
$N \quad$ Integer length of the sequence to be transformed. The transform is most efficient when $N-1$ is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the sequence.

R Real array of length LENR containing the sequence to be transformed.

LENR Integer dimension of R array. LENR must be at least INC* $(\mathrm{N}-1)+1$.

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine COST1I before the first call to routine COST1F or COST1B for a given transform length N. WSAVE's contents may be re-used for subsequent calls to COST1F and COST1B with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(\operatorname{REAL}(N)))+4$.

WORK Real work array of dimension at least LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least $\mathrm{N}-1$.

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by R ($0:(N-1)$ *INC) .

The output values of R are written over the input values.
$R(0)=$

$$
\begin{aligned}
& 0.5 * X(0) /(N-1) \\
+ & N-2 \\
& \text { SUM } \mathrm{N} 1=1 \\
+ & 0.5 * X((N 1 * I N C) /(N-1) \\
& 0.1) * I N C) /(N-1)
\end{aligned}
$$

For $J=1, \ldots, N-2$
$R(J * I N C)=$

$$
\begin{aligned}
& R(0) /(N-1) \\
& \text { N-2 } \\
& + \text { SUM 2.0*(X(N1*INC)*COS(J*N1*PI/(N-1)))/(N-1) } \\
& \text { N1=1 } \\
& +((-1) * * J) * X((N-1) * I N C) /(N-1) \\
& R((N-1) * I N C)= \\
& 0.5 * X(0) /(N-1) \\
& \text { N-2 } \\
& +\operatorname{SUM} R(N 1 * I N C) *((-1) * * N 1) /(N-1) \\
& \text { N1=1 } \\
& +0.5 *((-1) * *(N-1)) * X((N-1) * I N C) /(N-1)
\end{aligned}
$$

costmi

Return to Main Contents

NAME

COSTMI - initialization routine for COSTMB and COSTMF

SYNOPSIS

```
SUBROUTINE COSTMI (N, WSAVE, LENSAV, IER)
INTEGER N, LENSAV, IER
REAL WSAVE (LENSAV)
```


DESCRIPTION

FFTPACK 5.0 subroutine COSTMI initializes array WSAVE for use in its companion routines COSTMF and COSTMB. The prime factorization of N together with a tabulation of the trigonometric functions are computed and stored in array WSAVE. Separate WSAVE arrays are required for different values of N .

Input Arguments
$\mathrm{N} \quad$ Integer length of each sequence to be transformed. The transform is most efficient when N is a product of small primes.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(\operatorname{REAL}(N)))+4$

Output Arguments

WSAVE Real work array with dimension LENSAV, containing the prime factors of N and also containing certain trigonometric values which will be used in routines COSTMB or COSTMF.

```
IER Integer error return
= O successful exit
= 2 input parameter LENSAV not big enough
= 20 input error returned by lower level routine
```


costmb

Return to Main Contents

NAME

COSTMB - real, multiple backward cosine fast Fourier transform

SYNOPSIS

SUBROUTINE COSTMB (LOT, JUMP, N, INC, R, LENR, WSAVE, LENSAV,
1

INTEGER LOT, JUMP, N, INC, LENR, LENSAV, LENWRK, IER
REAL R (LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine COSTMB computes the one-dimensional Fourier transform of multiple even sequences within a real array. This transform is referred to as the backward transform or Fourier synthesis, transforming the sequences from spectral to physical space.

This transform is normalized since a call to COSTMB followed by a call to COSTMF (or vice-versa) reproduces the original array within roundoff error.

Input Arguments

LOT Integer number of sequences to be transformed within array R.

JUMP Integer increment between the locations, in array R, of the first elements of two consecutive sequences to be transformed.
transform is most efficient when $N-1$ is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the same sequence.
$R \quad$ Real array containing LOT sequences, each having length N. R can have any number of dimensions, but the total number of locations must be at least LENR.

LENR Integer dimension of R array. LENR must be at least (LOT-1)*JUMP + INC* $(\mathrm{N}-1)+1$.

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine COSTMI before the first call to routine COSTMF or COSTMB for a given transform length N. WSAVE's contents may be re-used for subsequent calls to COSTMF and COSTMB with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(R E A L(N)))+4$.

WORK Real work array of dimension at least LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least LOT* ($\mathrm{N}+1$).

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by $R(0:(L O T-1) * J U M P+(N-1) * I N C)$.

The output values of R are written over the input values. For $\mathrm{I}=0, \ldots, \mathrm{LOT}-1$ and $\mathrm{J}=0, \ldots, \mathrm{~N}-1$

$$
R(I * J U M P+J * I N C)=
$$

$$
\mathrm{N}-1
$$

$$
\text { SUM } R(I * J U M P+N 1 * I N C) * \operatorname{COS}(J * N 1 * P I /(N-1))
$$

$$
\mathrm{N} 1=0
$$

IER Integer error return
$=0$ successful exit
$=1$ input parameter LENR not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=4$ input parameters INC, JUMP,N,LOT are not consistent.
$=20$ input error returned by lower level routine

The parameters integers INC, JUMP, N and LOT are consistent if equality
$I 1 * I N C+J 1 * J U M P=I 2 * I N C+J 2 * J U M P$ for $I 1, I 2<N$ and $J 1, J 2<L O T$ implies $I 1=I 2$ and $J 1=J 2$.

For multiple FFTs to execute correctly, input variables INC, JUMP, N and LOT must be consistent, otherwise at least one array element mistakenly is transformed more than once.

costmf

Return to Main Contents

NAME

COSTMF - real, multiple forward cosine fast Fourier transform

SYNOPSIS

SUBROUTINE COSTMF (LOT, JUMP, N, INC, R, LENR, WSAVE, LENSAV,
1

INTEGER LOT, JUMP, N, INC, LENR, LENSAV, LENWRK, IER
REAL R (LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine COSTMF computes the one-dimensional Fourier transform of multiple even sequences within a real array. This transform is referred to as the forward transform or Fourier analysis, transforming the sequences from physical to spectral space.

This transform is normalized since a call to COSTMF followed by a call to COSTMB (or vice-versa) reproduces the original array within roundoff error.

Input Arguments

LOT Integer number of sequences to be transformed within array R.

JUMP Integer increment between the locations, in array R, of the first elements of two consecutive sequences to be transformed.
transform is most efficient when $N-1$ is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the same sequence.
$R \quad$ Real array containing LOT sequences, each having length N. R can have any number of dimensions, but the total number of locations must be at least LENR.

LENR Integer dimension of R array. LENR must be at least (LOT-1)*JUMP + INC* $(\mathrm{N}-1)+1$.

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine COSTMI before the first call to routine COSTMF or COSTMB for a given transform length N. WSAVE's contents may be re-used for subsequent calls to COSTMF and COSTMB with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(R E A L(N)))+4$.

WORK Real work array of dimension at least LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least LOT* ($\mathrm{N}+1$).

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by $R(0:(L O T-1) * J U M P+(N-1) * I N C)$.

The output values of R are written over the input values.

For $I=0, \ldots, L O T-1$
$R(I *$ JUMP $)=$

$$
0.5 * X(I * J U M P) /(N-1)
$$

$$
\begin{aligned}
& \mathrm{N}-2 \\
& + \text { SUM R (I*JUMP + * N } 1 \text { * INC) / (} \mathrm{N}-1 \text {) } \\
& \mathrm{N} 1=1 \\
& +0.5 * X(I * J U M P+(N-1) * I N C) /(N-1)
\end{aligned}
$$

For $\mathrm{I}=0, \ldots, \mathrm{LOT}-1$ and $\mathrm{J}=1, \ldots, \mathrm{~N}-2$
$R(I * J U M P+J * I N C)=$

$$
\begin{aligned}
& R(I * J U M P) /(N-1) \\
& N-2 \\
&+ S U M \\
& N 1=1 \\
&+((-1) * * J) * X(I * J U M P+(N-1) * I N C) /(N-1)
\end{aligned}
$$

For $I=0, \ldots, L O T-1$
$R(I * J U M P+(N-1) * I N C)=$

$$
\begin{aligned}
& 0.5 * X(I * J U M P) /(N-1) \\
&+ \mathrm{SUM} R(I * J U M P+* N 1 * I N C) *((-1) * * N 1) /(N-1) \\
& N 1=1
\end{aligned}+\quad 0.5 *((-1) * *(N-1)) * X(I * J U M P+(N-1) * I N C) /(N-1)
$$

IER Integer error return
$=0$ successful exit
$=1$ input parameter LENR not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=4$ input parameters INC, JUMP,N,LOT are not consistent.
$=20$ input error returned by lower level routine

The parameters integers INC, JUMP, N and LOT are consistent if equality
$I 1 * I N C+J 1 * J U M P=I 2 * I N C+J 2 * J U M P$ for $I 1, I 2<N$ and $\mathrm{J} 1, \mathrm{~J} 2<\mathrm{LOT}$ implies $\mathrm{I} 1=\mathrm{I} 2$ and $\mathrm{J} 1=\mathrm{J} 2$.

For multiple FFTs to execute correctly, input variables

INC, JUMP, N and LOT must be consistent, otherwise at least one array element mistakenly is transformed more than once.

sint1i

Return to Main Contents

NAME

SINT1I - initialization routine for SINT1B and SINT1F

SYNOPSIS

| SUBROUTINE | SINT1I (N, WSAVE, LENSAV, IER) | |
| :--- | :--- | :--- | :--- |
| INTEGER | N, LENSAV, IER | |
| REAL | WSAVE (LENSAV) | |

DESCRIPTION

FFTPACK 5.0 subroutine SINTII initializes array WSAVE for use in its companion routines SINT1F and SINT1B. The prime factorization of N together with a tabulation of the trigonometric functions are computed and stored in array WSAVE. Separate WSAVE arrays are required for different values of N .

Input Arguments
$\mathrm{N} \quad$ Integer length of the sequence to be transformed. The transform is most efficient when $N+1$ is a product of small primes.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $\mathrm{N} / 2+\mathrm{N}+\operatorname{INT}(\mathrm{LOG}(\operatorname{REAL}(\mathrm{N})))+4$ 。

Output Arguments

WSAVE Real work array with dimension LENSAV, containing the prime factors of N and also containing certain trigonometric values which will be used in routines SINT1B or SINT1F.

```
IER Integer error return
= O successful exit
= 2 input parameter LENSAV not big enough
= 20 input error returned by lower level routine
```


sint1b

Return to Main Contents

NAME

SINT1B - real backward sine fast Fourier transform

SYNOPSIS

SUBROUTINE SINT1B (N, INC, R, LENR, WSAVE, LENSAV, WORK, LENWRK, IER)

INTEGER N, INC, LENR, LENSAV, LENWRK, IER
REAL R(LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine SINT1B computes the one-dimensional Fourier transform of an odd sequence within a real array. This transform is referred to as the backward transform or Fourier synthesis, transforming the sequence from spectral to physical space.

This transform is normalized since a call to SINT1B followed by a call to SINT1F (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
$\mathrm{N} \quad$ Integer length of the sequence to be transformed. The transform is most efficient when $N+1$ is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the sequence.

R Real array of length LENR containing the sequence to be transformed.

LENR Integer dimension of R array. LENR must be at least INC* $(\mathrm{N}-1)+1$ 。

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine SINT1I before the first call to routine SINT1F or SINT1B for a given transform length N. WSAVE's contents may be re-used for subsequent calls to SINT1F and SINT1B with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $\mathrm{N} / 2+\mathrm{N}+\operatorname{INT}(\mathrm{LOG}(\operatorname{REAL}(\mathrm{N})))+4$.

WORK Real work array of dimension at least LENWRK.

LENWRK Integer dimension of WORK array. Must be at least $2 * N+2$.

Output Arguments

R Real output array. For purposes of exposition, assume R's range of indices is given by R (INC: N^{*} INC) .

The output values of R are written over the input values. For $J=1, \ldots, N$

$$
R(J * I N C)=
$$

$$
\begin{aligned}
& \mathrm{SUM} \\
& \mathrm{~N} 1=1
\end{aligned} \mathrm{R}(\mathrm{~N} 1 * I N C) * \operatorname{SIN}(\mathrm{~J} * \mathrm{~N} 1 * \mathrm{PI} /(\mathrm{N}+1))
$$

IER Integer error return
$=0$ successful exit
$=1$ input parameter LENR not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=20$ input error returned by lower level routine

sint1f

Return to Main Contents

NAME

SINT1F - real forward sine fast Fourier transform

SYNOPSIS

SUBROUTINE SINT1F (N, INC, R, LENR, WSAVE, LENSAV, WORK, LENWRK, IER)

INTEGER N, INC, LENR, LENSAV, LENWRK, IER
REAL R(LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine SINT1F computes the one-dimensional Fourier transform of an odd sequence within a real array. This transform is referred to as the forward transform or Fourier analysis, transforming the sequence from physical to spectral space.

This transform is normalized since a call to SINT1F followed by a call to SINT1B (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
$N \quad$ Integer length of the sequence to be transformed. The transform is most efficient when $N+1$ is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the sequence.

R Real array of length LENR containing the sequence to be transformed.

LENR Integer dimension of R array. LENR must be at least INC* $(\mathrm{N}-1)+1$.

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine SINT1I before the first call to routine SINT1F or SINT1B for a given transform length N. WSAVE's contents may be re-used for subsequent calls to SINT1F and SINT1B with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $\mathrm{N} / 2+\mathrm{N}+\operatorname{INT}(\mathrm{LOG}(\operatorname{REAL}(\mathrm{N})))+4$ 。

WORK Real work array of dimension at least LENWRK.

LENWRK Integer dimension of WORK array. Must be at least $2 * N+2$.

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by $R(I N C:(N-1) * I N C)$.

The output values of R are written over the input values. For J=1,...,N

$$
R(J * I N C)=
$$

> N
> SUM $\mathrm{N} 1=1$

IER Integer error return
$=0$ successful exit
$=1$ input parameter LENR not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=20$ input error returned by lower level routine

sintmi

Return to Main Contents

NAME

SINTMI - initialization routine for SINTMB and SINTMF

SYNOPSIS

| SUBROUTINE | SINTMI (N, WSAVE, LENSAV, IER) | |
| :--- | :--- | :--- | :--- |
| INTEGER | N, LENSAV, IER | |
| REAL | WSAVE (LENSAV) | |

DESCRIPTION

FFTPACK 5.0 subroutine SINTMI initializes array WSAVE for use in its companion routines SINTMF and SINTMB. The prime factorization of N together with a tabulation of the trigonometric functions are computed and stored in array WSAVE. Separate WSAVE arrays are required for different values of N .

Input Arguments
$\mathrm{N} \quad$ Integer length of each sequence to be transformed. The transform is most efficient when N is a product of small primes.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $\mathrm{N} / 2+\mathrm{N}+\mathrm{INT}(\mathrm{LOG}(\operatorname{REAL}(\mathrm{N})))+4$.

Output Arguments

WSAVE Real work array with dimension LENSAV, containing the prime factors of N and also containing certain trigonometric values which will be used in routines SINTMB or SINTMF.

```
IER Integer error return
= O successful exit
= 2 input parameter LENSAV not big enough
= 20 input error returned by lower level routine
```


sintmb

Return to Main Contents

NAME

SINTMB - real, multiple backward sine fast Fourier transform

SYNOPSIS

SUBROUTINE SINTMB (LOT, JUMP, N, INC, R, LENR, WSAVE, LENSAV,
1 WORK, LENWRK, IER)

INTEGER LOT, JUMP, N, INC, LENR, LENSAV, LENWRK, IER REAL R (LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine SINTMB computes the one-dimensional Fourier transform of multiple odd sequences within a real array. This transform is referred to as the backward transform or Fourier synthesis, transforming the sequences from spectral to physical space.

This transform is normalized since a call to SINTMB followed by a call to SINTMF (or vice-versa) reproduces the original array within roundoff error.

Input Arguments

LOT Integer number of sequences to be transformed within array R.

JUMP Integer increment between the locations, in array R, of the first elements of two consecutive sequences.

N Integer length of each sequence to be transformed. The
transform is most efficient when $N+1$ is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the same sequence.
$R \quad$ Real array containing LOT sequences, each having length N. R can have any number of dimensions, but the total number of locations must be at least LENR.

LENR Integer dimension of R array. LENR must be at least (LOT-1)*JUMP + INC* $(\mathrm{N}-1)+1$.

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine SINTMI before the first call to routine SINTMF or SINTMB for a given transform length N. WSAVE's contents may be re-used for subsequent calls to SINTMF and SINTMB with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $\mathrm{N} / 2+\mathrm{N}+\mathrm{INT}(\mathrm{LOG}(\operatorname{REAL}(\mathrm{N})))+4$ 。

WORK Real work array of dimension at least LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least LOT* (2 * $\mathrm{N}+4$).

Output Arguments

R Real output array. For purposes of exposition, assume R's range of indices is given by R (INC: (LOT-1)*JUMP + N* INC) .

The output values of R are written over the input values.
For $I=0, \ldots, L O T-1$ and $J=1, \ldots, N$

$$
R(I * J U M P+J * I N C)=
$$

N

$$
\begin{aligned}
& \text { SUM } R(I * J U M P+* N 1 * I N C) * S I N(J * N 1 * P I /(N+1)) \\
& N 1=1
\end{aligned}
$$

IER Integer error return
$=0$ successful exit
$=1$ input parameter LENR not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=4$ input parameters INC, JUMP,N,LOT are not consistent.
$=20$ input error returned by lower level routine

The parameters integers INC, JUMP, N and LOT are consistent if equality
I1*INC + J1*JUMP = I2*INC + J2*JUMP for I1,I2 < N and J1, J2 < LOT implies I1=I2 and J1=J2.

For multiple FFTs to execute correctly, input variables INC, JUMP, N and LOT must be consistent ... otherwise at least one array element mistakenly is transformed more than once.

sintmf

Return to Main Contents

NAME

SINTMF - real, multiple forward sine fast Fourier transform

SYNOPSIS

SUBROUTINE SINTMF (LOT, JUMP, N, INC, R, LENR, WSAVE, LENSAV,
1 WORK, LENWRK, IER)

INTEGER LOT, JUMP, N, INC, LENR, LENSAV, LENWRK, IER REAL R(LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine SINTMF computes the one-dimensional Fourier transform of multiple odd sequences within a real array. This transform is referred to as the forward transform or Fourier analysis, transforming the sequences from physical to spectral space.

This transform is normalized since a call to SINTMF followed by a call to SINTMB (or vice-versa) reproduces the original array within roundoff error.

Input Arguments

LOT Integer number of sequences to be transformed within array R.

JUMP Integer increment between the locations, in array R, of the first elements of two consecutive sequences to be transformed.

Integer length of each sequence to be transformed. The transform is most efficient when $N+1$ is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the same sequence.

R Real array containing LOT sequences, each having length N. R can have any number of dimensions, but the total number of locations must be at least LENR.

LENR Integer dimension of R array. LENR must be at least (LOT-1)*JUMP + INC* $(N-1)+1$.

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine SINTMI before the first call to routine SINTMF or SINTMB for a given transform length N. WSAVE's contents may be re-used for subsequent calls to SINTMF and SINTMB with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $\mathrm{N} / 2+\mathrm{N}+\operatorname{INT}(\operatorname{LOG}(\operatorname{REAL}(\mathrm{N})))+4$.

WORK Real work array of dimension at least LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least LOT* ($2 * N+4$).

Output Arguments
R Real output array R. For purposes of exposition, assume R's range of indices is given by R (0 : (LOT-1) *JUMP + ($\mathrm{N}-1$) *INC) .

The output values of R are written over the input values. For $I=0, \ldots, L O T-1$ and $J=1, \ldots, N$
$R(I * J U M P+J * I N C)=$

N
SUM 2.*R(I*JUMP + *N1*INC)*SIN(J*N1*PI/(N+1))/(N+1)
$\mathrm{N} 1=1$

IER \quad	Integer error return
	$=0$ successful exit
	$=1$ input parameter LENR not big enough
	$=2$ input parameter LENSAV not big enough
	$=3$ input parameter LENWRK not big enough
	4 input parameters INC, JUMP,N,LOT are not consistent.

The parameters integers INC, JUMP, N and LOT are consistent if equality I1*INC + J1*JUMP = I2*INC + J2*JUMP for I1,I2 $<\mathrm{N}$ and J1, J2 < LOT implies I1=I2 and J1=J2.

For multiple FFTs to execute correctly, input variables INC, JUMP, N and LOT must be consistent ... otherwise at least one array element mistakenly is transformed more than once.

cosq1i

Return to Main Contents

NAME

COSQ1I - initialization routine for COSQ1B and COSQ1F

SYNOPSIS

```
SUBROUTINE COSQ1I (N, WSAVE, LENSAV, IER)
INTEGER N, LENSAV, IER
REAL WSAVE (LENSAV)
```


DESCRIPTION

FFTPACK 5.0 subroutine COSQ1I initializes array WSAVE for use in its companion routines COSQ1F and COSQ1B. The prime factorization of N together with a tabulation of the trigonometric functions are computed and stored in array WSAVE. Separate WSAVE arrays are required for different values of N .

Input Arguments
$\mathrm{N} \quad$ Integer length of the sequence to be transformed. The transform is most efficient when N is a product of small primes.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(\operatorname{LOG}(\operatorname{REAL}(N)))+4$.

Output Arguments
WSAVE Real work array with dimension LENSAV, containing the prime factors of N and also containing certain trigonometric values which will be used in routines COSQ1B or COSQ1F.

```
IER Integer error return
= O successful exit
= 2 input parameter LENSAV not big enough
= 20 input error returned by lower level routine
```


cosq1b

Return to Main Contents

NAME

COSQ1B - real, backward quarter-cosine fast Fourier transform

SYNOPSIS

SUBROUTINE COSQ1B (N, INC, R, LENR, WSAVE, LENSAV, WORK, LENWRK, IER)
INTEGER N, INC, LENR, LENSAV, LENWRK, IER
REAL R(LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine COSQ1B computes the one-dimensional Fourier transform of a sequence which is a cosine series with odd wave numbers. This transform is referred to as the backward transform or Fourier synthesis, transforming the sequence from spectral to physical space.

This transform is normalized since a call to COSQ1B followed by a call to COSQ1F (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
$\mathrm{N} \quad$ Integer number of elements to be transformed in the sequence. The transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the sequence.

R Real array of length LENR containing the sequence to be transformed.

LENR Integer dimension of R array. LENR must be at least INC* $(N-1)+1$.

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine COSQ1I before the first call to routine COSQ1F or COSQ1B for a given transform length N. WSAVE's contents may be re-used for subsequent calls to COSQ1F and COSQ1B with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(\operatorname{REAL}(N)))+4$.

WORK Real array of dimension LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least N.

Output Arguments

R Real output array. For purposes of exposition, assume R's range of indices is given by $R(0:(N-1) * I N C)$.

The output values of R are written over the input values. For $J=0, \ldots, N-1$

$$
R(J * I N C)=
$$

$$
\mathrm{N}-1
$$

$$
\text { SUM } R(N 1 * I N C) * \operatorname{CoS}(J *(2 * N 1+1) * P I /(2 * N))
$$

$$
\mathrm{N} 1=0
$$

WSAVE Contains values initialized by subroutine COSQ1I that must not be destroyed between calls to routine COSQ1F or COSQ1B.

IER Integer error return

```
= 0 successful exit
= 1 input parameter LENR not big enough
= 2 input parameter LENSAV not big enough
= 3 input parameter LENWRK not big enough
= 20 input error returned by lower level routine
```


cosq1f

Return to Main Contents

NAME

COSQ1F - real, forward quarter-cosine fast Fourier transform

SYNOPSIS

SUBROUTINE COSQ1F (N, INC, R, LENR, WSAVE, LENSAV, WORK, LENWRK, IER)
INTEGER N, INC, LENR, LENSAV, LENWRK, IER
REAL R(LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine COSQ1F computes the one-dimensional Fourier transform of a sequence which is a cosine series with odd wave numbers. This transform is referred to as the forward transform or Fourier analysis, transforming the sequence from physical to spectral space.

This transform is normalized since a call to COSQ1F followed by a call to COSQ1B (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
$\mathrm{N} \quad$ Integer length of the sequence to be transformed. The transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the sequence.

R Real array of length LENR containing the sequence to be transformed.

LENR Integer dimension of R array. LENR must be at least INC* $(\mathrm{N}-1)+1$.

WSAVE Real work array with dimension LENSAV. WSAVE's contents must be initialized with a call to subroutine COSQ1I before the first call to routine COSQ1F or COSQ1B for a given transform length N. WSAVE's contents may be re-used for subsequent calls to COSQ1F and COSQ1B with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(\operatorname{REAL}(N)))+4$.

WORK Real array of dimension LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least N.

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by $R(0:(N-1) * I N C)$.

The output values of R are written over the input values. For $J=0, \ldots, N-1$

$$
\begin{aligned}
& R(J * I N C)= \\
& R(0) / N \\
& N-1 \\
& +\quad \mathrm{SUM} \quad 2 . * R(N 1 * I N C) * \operatorname{COS}((2 * J+1) * N 1 * P I /(2 * N)) / N \\
& N 1=1
\end{aligned}
$$

WSAVE Contains values initialized by subroutine COSQ1I that must not be destroyed between calls to routine COSQ1F or COSQ1B.

```
IER
Integer error return
= O successful exit
= 1 input parameter LENR not big enough
= 2 input parameter LENSAV not big enough
= 3 input parameter LENWRK not big enough
= 20 input error returned by lower level routine
```


cosqmi

Return to Main Contents

NAME

COSQMI - initialization routine for COSQMB and COSQMF

SYNOPSIS

```
SUBROUTINE COSQMI (N, WSAVE, LENSAV, IER)
INTEGER N, LENSAV, IER
REAL WSAVE (LENSAV)
```


DESCRIPTION

FFTPACK 5.0 subroutine COSQMI initializes array WSAVE for use in its companion routines COSQMF and COSQMB. The prime factorization of N together with a tabulation of the trigonometric functions are computed and stored in array WSAVE. Separate WSAVE arrays are required for different values of N .

Input Arguments
$\mathrm{N} \quad$ Integer length of each sequence to be transformed. The transform is most efficient when N is a product of small primes.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(\operatorname{REAL}(N)))+4$.

Output Arguments

WSAVE Real work array with dimension LENSAV, containing the prime factors of N and also containing certain trigonometric values which will be used in routines COSQMB or COSQMF.

```
IER Integer error return
= O successful exit
= 2 input parameter LENSAV not big enough
= 20 input error returned by lower level routine
```


cosqmb

Return to Main Contents

NAME

COSQMB - real, multiple backward quarter-cosine fast Fourier transform

SYNOPSIS

SUBROUTINE COSQMB (LOT, JUMP, N, INC, R, LENR, WSAVE, LENSAV,
1

INTEGER LOT, JUMP, N, INC, LENR, LENSAV, LENWRK, IER
REAL R(LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine COSQMB computes the one-dimensional Fourier transform of multiple sequences, each of which is a cosine series with odd wave numbers. This transform is referred to as the backward transform or Fourier synthesis, transforming the sequences from spectral to physical space.

This transform is normalized since a call to COSQMB followed by a call to COSQMF (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
LOT Integer number of sequences to be transformed within array R.

JUMP Integer increment between the locations, in array R, of the first elements of two consecutive sequences to be transformed.

Integer length of each sequence to be transformed. The
transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the same sequence.
$R \quad$ Real array containing LOT sequences, each having length N. R can have any number of dimensions, but the total number of locations must be at least LENR.

LENR Integer dimension of R array. LENR must be at least (LOT-1)*JUMP + INC* $(\mathrm{N}-1)+1$.

WSAVE Real work array with dimension LENSAV. WSAVE's contents must be initialized with a call to subroutine COSQMI before the first call to routine COSQMF or COSQMB for a given transform length N. WSAVE's contents may be re-used for subsequent calls to COSQMF and COSQMB with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(R E A L(N)))+4$.

WORK Real array of dimension LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least LOT*N.

Output Arguments

R Real output array. For purposes of exposition, assume R's range of indices is given by $R(0:(L O T-1) * J U M P+(N-1) * I N C)$.

The output values of R are written over the input values. For $\mathrm{I}=0, \ldots, \mathrm{LOT}-1$ and $\mathrm{J}=0, \ldots, \mathrm{~N}-1$

$$
R(I * J U M P+J * I N C)=
$$

$$
\mathrm{N}-1
$$

$$
\begin{aligned}
& \operatorname{SUM} R(I \star J U M P+N 1 * I N C) * \operatorname{COS}(J \star(2 \star N 1+1) * P I /(2 \star N)) \\
& N 1=0
\end{aligned}
$$

WSAVE Contains values initialized by subroutine COSQMI that must not be destroyed between calls to routine COSQMF or COSQMB.

IER Integer error return
$=0$ successful exit
$=1$ input parameter LENR not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=4$ input parameters INC, JUMP,N,LOT are not consistent.
$=20$ input error returned by lower level routine

The parameters integers INC, JUMP, N and LOT are consistent if equality
I1*INC + J1*JUMP = I2*INC + J2*JUMP for I1,I2<N and J1, J2 < LOT implies I1=I2 and J1=J2.

For multiple FFTs to execute correctly, input variables INC, JUMP, N and LOT must be consistent, otherwise at least one array element mistakenly is transformed more than once.

cosqmf

Return to Main Contents

NAME

COSQMF - real, multiple forward quarter-cosine fast Fourier transform

SYNOPSIS

SUBROUTINE COSQMF (LOT, JUMP, N, INC, R, LENR, WSAVE, LENSAV,
1 WORK, LENWRK, IER)

INTEGER LOT, JUMP, N, INC, LENR, LENSAV, LENWRK, IER
REAL R(LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine COSQMF computes the one-dimensional Fourier transform of multiple sequences within a real array, where each of the sequences is a cosine series with odd wave numbers. This transform is referred to as the forward transform or Fourier synthesis, transforming the sequences from spectral to physical space.

This transform is normalized since a call to COSQMF followed by a call to COSQMB (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
LOT Integer number of sequences to be transformed within array R.

JUMP Integer increment between the locations, in array R, of the first elements of two consecutive sequences to be transformed.

Integer length of each sequence to be transformed. The transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the same sequence.

R Real array containing LOT sequences, each having length N. R can have any number of dimensions, but the total number of locations must be at least LENR.

LENR Integer dimension of R array. LENR must be at least (LOT-1)*JUMP + INC* $(N-1)+1$.

WSAVE Real work array o length LENSAV. WSAVE's contents must be initialized with a call to subroutine COSQMI before the first call to routine COSQMF or COSQMB for a given transform length N. WSAVE's contents may be re-used for subsequent calls to COSQMF and COSQMB with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(\operatorname{LOG}(\operatorname{REAL}(N)))+4$.

WORK Real array of dimension LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least LOT*N.

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by $R(0:(L O T-1) * J U M P+(N-1) * I N C)$.

The output values of R are written over the input values. For $\mathrm{I}=0, \ldots, \mathrm{LOT}-1$ and $\mathrm{J}=0, \ldots, \mathrm{~N}-1$

$$
R(I * J U M P+J * I N C)=
$$

$$
R(I * J U M P) / N
$$

$$
\begin{aligned}
& \mathrm{N}-1 \\
& + \text { SUM 2.*R(I*JUMP + *N1*INC)*COS (} 2 * \mathrm{~J}+1 \text {) *N1*PI/(2*N))/N } \\
& \text { N1 }=1
\end{aligned}
$$

```
IER Integer error return
    = O successful exit
= 1 input parameter LENR not big enough
= 2 input parameter LENSAV not big enough
= 3 input parameter LENWRK not big enough
= 4 input parameters INC,JUMP,N,LOT are not consistent.
= 20 input error returned by lower level routine
```

The parameters integers INC, JUMP, N and LOT are consistent if equality
I1*INC + J1*JUMP = I2*INC + J2*JUMP for I1,I2 < N and J1, J2 < LOT implies I1=I2 and J1=J2.

For multiple FFTs to execute correctly, input variables INC, JUMP, N and LOT must be consistent, otherwise at least one array element mistakenly is transformed more than once.

sinq1i

Return to Main Contents

NAME

SINQ1I - initialization routine for SINQ1B and SINQ1F

SYNOPSIS

| SUBROUTINE | SINQ1I (N, WSAVE, LENSAV, IER) | |
| :--- | :--- | :--- | :--- |
| INTEGER | N, LENSAV, IER | |
| REAL | WSAVE (LENSAV) | |

DESCRIPTION

FFTPACK 5.0 subroutine SINQ1I initializes array WSAVE for use in its companion routines SINQ1F and SINQ1B. The prime factorization of N together with a tabulation of the trigonometric functions are computed and stored in array WSAVE. Separate WSAVE arrays are required for different values of N .

Input Arguments
$\mathrm{N} \quad$ Integer length of the sequence to be transformed. The transform is most efficient when N is a product of small primes.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(\operatorname{REAL}(N)))+4$.

Output Arguments

WSAVE Real work array with dimension LENSAV, containing the prime factors of N and also containing certain trigonometric values which will be used in routines SINQ1B or SINQ1F.

```
IER Integer error return
= O successful exit
= 2 input parameter LENSAV not big enough
= 20 input error returned by lower level routine
```


sinq1b

Return to Main Contents

NAME

SINQ1B - real backward quarter-sine fast Fourier transform

SYNOPSIS

SUBROUTINE SINQ1B (N, INC, R, LENR, WSAVE, LENSAV, WORK, LENWRK, IER)

INTEGER N, INC, LENR, LENSAV, LENWRK, IER
REAL R(LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine SINQ1B computes the one-dimensional Fourier transform of a sequence which is a sine series with odd wave numbers. This transform is referred to as the backward transform or Fourier synthesis, transforming the sequence from spectral to physical space.

This transform is normalized since a call to SINQ1B followed by a call to SINQ1F (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
$\mathrm{N} \quad$ Integer length of the sequence to be transformed. The transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the sequence.

R Real array of length LENR containing the sequence to be
transformed.

LENR Integer dimension of R array. LENR must be at least INC* $(\mathrm{N}-1)+1$.

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine SINQ1I before the first call to routine SINQ1F or SINQ1B for a given transform length N. WSAVE's contents may be re-used for subsequent calls to SINQ1F and SINQ1B with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(\operatorname{REAL}(N)))+4$.

WORK Real work array of dimension at least LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least N.

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by R (INC: N*INC) .

The output values of R are written over the input values. For J=1,..., N

$$
R(J \star I N C)=
$$

N
SUM $\mathrm{R}(\mathrm{N} 1 * \operatorname{INC}) * \operatorname{SIN}\left(\mathrm{~J}^{*}(2 * N 1-1) * P I /(2 * N)\right)$
$\mathrm{N} 1=1$

IER Integer error return
$=0$ successful exit
$=1$ input parameter LENR not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=20$ input error returned by lower level routine

sinq1f

Return to Main Contents

NAME

SINQ1F - real forward quarter-sine fast Fourier transform

SYNOPSIS

SUBROUTINE SINQ1F (N, INC, R, LENR, WSAVE, LENSAV, WORK, LENWRK, IER)

INTEGER N, INC, LENR, LENSAV, LENWRK, IER
REAL R(LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine SINQ1F computes the one-dimensional Fourier transform of a sequence which is a sine series of odd wave numbers. This transform is referred to as the forward transform or fourier analysis, transforming the sequence from physical to spectral space.

This transform is normalized since a call to SINQ1F followed by a call to SINQ1B (or vice-versa) reproduces the original array within roundoff error.

Input Arguments
$\mathrm{N} \quad$ Integer length of the sequence to be transformed. The transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the sequence.

R Real array of length LENR containing the sequence to be transformed.

LENR Integer dimension of R array. LENR must be at least INC* $(\mathrm{N}-1)+1$ 。

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine SINQ1I before the first call to routine SINQ1F or SINQ1B for a given transform length N. WSAVE's contents may be re-used for subsequent calls to SINQ1F and SINQ1B with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(R E A L(N)))+4$.

WORK Real work array of dimension at least LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least N.

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by R (INC: N*INC) .

The output values of R are written over the input values. For J=1,...,N

$$
\begin{aligned}
& R(J * I N C)= \\
& \quad+\quad \begin{array}{l}
\text { SUM }-1 \\
\\
N 1=1
\end{array}(2 . * R(N 1 * I N C) * \operatorname{SIN}(((2 * J-1) * N 1 * P I /(2 * N))) / N \\
& + \\
& ((-1) * *(J+1)) * R(N * I N C) / N
\end{aligned}
$$

IER Integer error return
$=0$ successful exit
$=1$ input parameter LENR not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=20$ input error returned by lower level routine

sinqmi

Return to Main Contents

NAME

SINQMI - initialization routine for SINQMB and SINQMF

SYNOPSIS

| SUBROUTINE | SINQMI (N, WSAVE, LENSAV, IER) | |
| :--- | :--- | :--- | :--- |
| INTEGER | N, LENSAV, IER | |
| REAL | WSAVE (LENSAV) | |

DESCRIPTION

FFTPACK 5.0 subroutine SINQMI initializes array WSAVE for use in its companion routines SINQMF and SINQMB. The prime factorization of N together with a tabulation of the trigonometric functions are computed and stored in array WSAVE. Separate WSAVE arrays are required for different values of N .

Input Arguments
$\mathrm{N} \quad$ Integer length of each sequence to be transformed. The transform is most efficient when N is a product of small primes.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(\operatorname{REAL}(N)))+4$.

Output Arguments

WSAVE Real work array with dimension LENSAV, containing the prime factors of N and also containing certain trigonometric values which will be used in routines SINQMB or SINQMF.

```
IER Integer error return
= O successful exit
= 2 input parameter LENSAV not big enough
= 20 input error returned by lower level routine
```


sinqmb

Return to Main Contents

NAME

SINQMB - real, multiple backward quarter-sine fast Fourier transform

SYNOPSIS

SUBROUTINE SINQMB (LOT, JUMP, N, INC, R, LENR, WSAVE, LENSAV,
1 WORK, LENWRK, IER)

INTEGER LOT, JUMP, N, INC, LENR, LENSAV, LENWRK, IER
REAL R (LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine $S I N Q M B$ computes the one-dimensional Fourier transform of multiple sequences within a real array, where each of the sequences is a sine series with odd wave numbers. This transform is referred to as the backward transform or Fourier synthesis, transforming the sequences from spectral to physical space.

This transform is normalized since a call to SINQMB followed by a call to SINQMF (or vice-versa) reproduces the original array within roundoff error.

Input Arguments

LOT Integer number of sequences to be transformed within array R.

JUMP Integer increment between the locations, in array R, of the first elements of two consecutive sequences to be transformed.
$\mathrm{N} \quad$ Integer length of each sequence to be transformed. The transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the same sequence.
$R \quad$ Real array containing LOT sequences, each having length N. R can have any number of dimensions, but the total number of locations must be at least LENR.

LENR Integer dimension of R array. LENR must be at least (LOT-1)*JUMP + INC* $(N-1)+1$.

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine SINQMI before the first call to routine SINQMF or SINQMB for a given transform length N. WSAVE's contents may be re-used for subsequent calls to SINQMF and SINQMB with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(L O G(R E A L(N)))+4$.

WORK Real work array of dimension at least LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least LOT*N.

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by
R (INC: (LOT-1) *JUMP + N*INC) .

The output values of R are written over the input values.
For $I=0, \ldots, L O T-1$ and $J=1, \ldots, N$

$$
R(I * J U M P+J * I N C)=
$$

N
SUM R (I*JUMP + N1*INC) *SIN (J* (2*N1-1) *PI/(2*N))
N1 $=1$

IER Integer error return
$=0$ successful exit
$=1$ input parameter LENR not big enough
$=2$ input parameter LENSAV not big enough
$=3$ input parameter LENWRK not big enough
$=4$ input parameters INC, JUMP,N,LOT are not consistent.
$=20$ input error returned by lower level routine

The parameters integers INC, JUMP, N and LOT are consistent if equality
$I 1 * I N C+J 1 * J U M P=I 2 * I N C+J 2 * J U M P$ for $I 1, I 2<N$ and J1, J2 < LOT implies I1=I2 and J1=J2.

For multiple FFTs to execute correctly, input variables INC, JUMP, N and LOT must be consistent ... otherwise at least one array element mistakenly is transformed more than once.

sinqmf

Return to Main Contents

NAME

SINQMF - real, multiple forward quarter-sine fast Fourier transform

SYNOPSIS

SUBROUTINE SINQMF (LOT, JUMP, N, INC, R, LENR, WSAVE, LENSAV,
1 WORK, LENWRK, IER)

INTEGER LOT, JUMP, N, INC, LENR, LENSAV, LENWRK, IER REAL R (LENR), WSAVE (LENSAV), WORK (LENWRK)

DESCRIPTION

FFTPACK 5.0 routine SINQMF computes the one-dimensional Fourier transform of multiple sequences within a real array, where each sequence is a sine series with odd wave numbers. This transform is referred to as the forward transform or Fourier synthesis, transforming the sequences from spectral to physical space.

This transform is normalized since a call to SINQMF followed by a call to SINQMB (or vice-versa) reproduces the original array within roundoff error.

Input Arguments

LOT Integer number of sequences to be transformed within array R.

JUMP
Integer increment between the locations, in array R, of the first elements of two consecutive sequences to be transformed.

Integer length of each sequence to be transformed. The transform is most efficient when N is a product of small primes.

INC Integer increment between the locations, in array R, of two consecutive elements within the same sequence.

R Real array containing LOT sequences, each having length N. R can have any number of dimensions, but the total number of locations must be at least LENR.

LENR Integer dimension of R array. LENR must be at least (LOT-1)*JUMP + INC* $(N-1)+1$.

WSAVE Real work array of length LENSAV. WSAVE's contents must be initialized with a call to subroutine SINQMI before the first call to routine SINQMF or $S I N Q M B$ for a given transform length N. WSAVE's contents may be re-used for subsequent calls to SINQMF and SINQMB with the same N.

LENSAV Integer dimension of WSAVE array. LENSAV must be at least $2 * N+\operatorname{INT}(\operatorname{LOG}(\operatorname{REAL}(N)))+4$.

WORK Real work array of dimension at least LENWRK.

LENWRK Integer dimension of WORK array. LENWRK must be at least LOT*N.

Output Arguments

R Real output array R. For purposes of exposition, assume R's range of indices is given by
R (INC: (LOT-1)*JUMP + N* INC) .

The output values of R are written over the input values. For $\mathrm{I}=0, \ldots, \mathrm{LOT}-1$ and $\mathrm{J}=1, \ldots, \mathrm{~N}$

$$
R(I * J U M P+J * I N C)=
$$

$$
\mathrm{N}-1
$$

$+\operatorname{SUM}(2 . * R(I * J U M P+* N 1 * I N C) * \operatorname{SIN}(((2 * J-1) * N 1 * P I /(2 * N))) / N$ N1 =1
$+((-1) * *(J+1)) * R(I * J U M P+N * I N C) / N$

IER

> Integer error return
> $=0$ successful exit
> $=1$ input parameter LENR not big enough
> $=2$ input parameter LENSAV not big enough
> $=3$ input parameter LENWRK not big enough
> $=4$ input parameters INC, JUMP, N,LOT are not consistent.
> $=20$ input error returned by lower level routine

The parameters integers INC, JUMP, N and LOT are consistent if equality
I1*INC + J1*JUMP = I2*INC + J2*JUMP for I1,I2 < N and J1, J2 < LOT implies I1=I2 and J1=J2.

For multiple FFTs to execute correctly, input variables INC, JUMP, N and LOT must be consistent ... otherwise at least one array element mistakenly is transformed more than once.

