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Big Bang Nucleosynthesis

16 April 2018

1 THE THERMAL HISTORY OF THE UNIVERSE

At very early epochs of the Universe interactions between different particles we so frequent
that particles can be considered being in nuclear equilibrium at each moment of time. In
equilibrium the rate of creation of particles is equal to the rate of their destruction. For
example, if m, is the mass of electron, then for moments when k7" > m.c? the abundance
of electrons and positrons is kept in equilibrium by reactions e~ + et <= v + 7.

For photos in equilibrium the mean number per unit volume per mode is given by the

occupation numbers:

/\/’:; (1)

chw/kT _ 1"
In order to find the number of photons with different frequencies in a cubic volume V = L3

we count all photons (plane waves) with wavenumbers:
2r
_n’
L

Here 77 = {n,,n,,n.} is a triplet of integer numbers. The number of photons in volume V'

k=

i = {ng, ny,n.}. (2)

with & in the range d3k is a product (occupation number)x(number of modes)x(number of

polarization states):
L3 L3 widw
L3 d = 2 . . _— .
n(w)dw N (27)3  m2c3 eholFT _ | (3)

Here we used k = w/c and d*k = 4wk?dk. This is the Planck formula:

2

n(w) = T2c3(eMo/FT 1) (4)

This can be integrated over all frequencies to give the total number of photonsn, per unit
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volume:

2¢(3) (KT)* T\
1S T (e M (2.726]() ' (5)

Here ((x) is the Riemann function: {(3) &~ 1.202. The specific entropy of radiation is s =
(4/3)a,T?. Thus the entropy of radiation and the number of photons are proportional one
to the other.

For t > 1sec when kT < 1GeV the comoving number-number density of baryons (pro-
tons and neutrons in all atoms) is preserved. The comoving number-density of photons is
preserved after electron-positron annihilation epoch kT ~ 0.5 MeV. The ratio of the number
of baryons np to the number of photons nng/n, is an important number characterizing our

Universe:

3H2Q, (T\°
np = 87er_p (ﬂ) ) (6)

and
_np _ 3m(he)® QW H§
Con, 16¢(3) Gmy(KTp)3

Numerically n ~ 107!, So, it is a very small number.

(7)

These derivations were done for one type of particles — photons. The same type of analysis
is valid for all relativistic bosons.

In more general case one can write the occupation number as:

1
N = cE-W)/kT £ 1° (8)

Here the “4” sign is for fermions (e.g. electrons, protons, neutrons) that obey the Fermi-
Dirac distribution. The “-” sign is for bosons (e.g., photons, neutrinos, gluons, W and Z
bosons,Higgs boson, mesons, deuterium, helium-4) that obey the Bose-Einstein distribution.
The energy F is related with momentum p and particle mass: E? = (¢p)?+ (mc?)?. Chemical
potential u defines the number of particles for non-relativistic case kT < mc?. For relativistic
particles g = 0 and their number is defined solely by the temperature.

If we know the temperature, we can find the number-density (n) and the mass density
(p) for bosons and fermions. We also need to know the statistical weight g of particles. For
example, for photons the statistical weight is ¢ = 2 to account for two polarizations. For
fermions the statistical weight is given by the spin (which is half-integer). For electrons the
spin is [ = 1/2 and statistical weight is 2/ + 1 = 2. Neutrino has spin 1/2, but there are
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Big Bang Nucleosynthesis 3

neutrinos and anti neutrinos and there are three types of neutrinos. So, statistical weight of
all neutrinos is 6. For relativistic particles (kT > mc?) the number-density and mass-density

are:

= (%)3 gT°, for bosons,
" 9)
%% (%) -gT?, for fermions.
2 3762];43 -gT, for bosons,
) e (10)

7wkt T4

S30ma 917, for fermions.

For nonrelativistic particles (kT < mc?)

(11)

e g(27rmk‘T)3/2 exp {(u — ch)} |

(2mh)3 kT
At very early epochs (t < 1sec) the main contribution to the density is due to relativistic

particles. If g, is the effective (total) statistical weight of particles in equilibrium, than the

relation between density and temperature is given by:

27.4
., Tk

_ 4
= 30738 g1, (12)

pC

where

o= ats Y u (13)

bosons fermions

Here is an example. For 1 MeV < kT" <100 MeV relativistic particles are photons, electrons,
positrons, and neutrinos. Thus the statistical weight is g. =2+ (7/8)(2+ 2+ 3-2) = 10.75.
Here the first term is for photons (two polarizations). The next two are for electrons and
positrons (each has spin 1/2) and the last term is for three types of neutrinos (electron, muon
and tau) each with neutrino and anti-neutrino. Note that there are no anti-protons: they
annihilated with most of protons at kT" ~ 1 GeV. Contribution of protons and neutrons to the
mass-density is very small. First, because they are not in equilibrium (too low temperature).
Second, because most of protons disappeared during proton-antiproton annihilation. Not all
protons annihilated because there is an asymmetry in nuclear rates producing protons and
antiprotons.
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4
2 FREEZE-OUT OF PARTICLE INTERACTIONS

At some moment the rate of nuclear reactions becomes slow as compared to the rate of
expansion leading to the “freeze-out” of particle concentrations. At this moment reactions
effectively stop operating and the comoving number-density of particles becomes constant.

An example of this freeze-out is the concentration of neutrinos. At early times the neu-
trinos were kept in equilibrium with all other particles (including photons, electrons and
positrons) thanks to reactions such as e” + et <= v+, v + e~ <= v + e . The cross-
section of these reactions is 0, = G%T?, where G = (292GeV)~? is the Fermi constant. The
number of reactions per neutrino per unit time is I', = no,c. For n o T? and o, o< T? we
have ', oc T, which is a very steep decline with increasing expansion parameter a oc 7.
Compare this with the rate of expansion: H? o< p oc T%, which gives H o< T? - a much slower
decline. At T' = 1 MeV neutrinos decoupled from the rest of the particles. From that moment
on their comoving number-density is preserved and temperature declined as T, o a™!.

A bit later, at T = 0.5MeV, the electrons and positrons annihilated leaving behind
a small fraction of electrons to pair with protons. Electron-positron annihilation dumped
their energy into photons, but not to neutrinos because neutrinos went out of equilibrium
earlier. Simple estimates how much this affected the photon entropy show that the ratio of

temperature of neutrinos to the temperature of photons should be

A\ 13
1;:(ﬁ> T,. (14)

This gives T, = 1.95K. We can find the contribution of the neutrinos to the density of
the relativistic particles at present: p,c* = (7/8)3a,T,} = 3(7/8)(4/11)"3a,T?. Here the
factor 7/8 comes from the fact that neutrinos are fermions and factor 3 is for three types of
neutrinos. We can find the ratio of the densities of non-relativistic to relativistic particles

and the moment of equality:

Onr o Qmh? at
=1.88 x 10 15
PRel a? 1.68&77—370 ’ ( )
1+ 2eq = 2.3 x 10%Q,,h%, (16)
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Big Bang Nucleosynthesis 5
3 FREEZE-OUT OF THE NEUTRON-PROTON RATIO

Another example of the “freeze-out” is the ratio of neutrons to protons at ¢t = 1 — 10sec.
At early times (7" > 1 MeV) protons and neutrons were in equilibrium thanks to reactions
et +n < p+ v, and e + p & n + v.. Note that neutrons are slightly more massive
than protons by Amc? = 1.28 MeV. So, in equilibrium there should be more protons than

neutrons:

LGNS 3 (17)
Np

When temperature was much bigger than k7T = 1.29MeV the number of neutrons to the
number of all baryons was about 1/2. By ¢ & 1sec the equilibrium ratio was n,,/(n, +n,) ~
1/6. However, the reactions that kept neutrons in equilibrium started to be not fast enough
leading to much larger abundance of neutrons because the weak reactions that kept neutrons
in equilibrium involve neutrinos that get out of equilibrium at the same time. The residual
concentration of neutrons at ¢ ~ 2sec was n,,/(n, +n,) ~ 1/6.

Free neutrons are unstable particles with exponential decay time 7,, &~ 15min. By ¢t =
100 sec when the Big Bang nucleosynthesis took place, the ratio of neutrons to baryons was

Ny,

-~
~

p

(18)

3|

4 BIG BANG NUCLEOSYNTHESIS

Epoch of Big Bang Nucleosynthesis (BBN): time ¢ ~ 100 sec; temperature kT =~ 0.1 MeV.

Involved particles:

particle composition binding energy, MeV

H =D (p,n) 2.2

*H=T (p,2n) 6.92 (19)
SHe (2p,n) 7.72
‘He  (2p,2n) 28.3

(20)
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6

Dominant nuclear reactions:

n+p & D+,

D+n & T+7,

D+D < T+p, (21)
D+D < °*He+n,
SHe4+n < T +p,

T+D < *‘He+n.

Note that D + D < “He + v does not play a role because of very small cross-section. The
bottleneck of this chain of reactions is the deuterium because it has a low binding energy:
once produced, it can easily be destroyed. Another peculiarity of our world is the absence of
stable elements with atomic weights 5 or 8, which makes production of elements heavier than
helium difficult. There are stable elements with atomic weights 6 and 7: °Li,”Li,” Be. Two of
those can be produced in small amounts in BBN: *He+T < "Li+~v and ‘He+3He < "Be+.

Precense of free neutrons is crucial for BBN. Without neutrons there would be no helium
because normal p +p = D + et + v + 7 is too slow because the reaction requires weak
interaction at the moment of close collision of protons making the cross-section of the reaction
very small.

Let’s define the abundance of different elements as the fraction of mass in element A as

compared with all baryons (neutrons and protons) in all nuclei:

An A
Zall nuclei(nn + TLp) .
For example, abundance of helium by mass Y for plasma with hydrogen, helium and carbon

X, = (22)

is Y = 4npye/(n, + 4npye + 12n¢).

We can estimate the abundance of helium predicted by BBN by simply assuming that
all free neutrons are locked up in helium at the and of BBN. Thus, the abundance of helium
is 1/2 of the abundance of neutrons before the onset of BBN. Because the initial ratio of

neutrons is n,/n, = 1/7, the predicted helium abundance is

A(ny )2
y = /2 o8 (23)
N, + 1y

We start our treatment of BBN reactions assuming the nuclear equilibrium. The equilib-
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Big Bang Nucleosynthesis 7

rium abundance of a non-relativistic element with atomic weight A and charge Z is defined

by (we use k =1 and ¢ = 1 units):

maT\ > My — g
na=4ga (%) €Xp {_TM} ) (24)

where g4 is the statistical weight of element A and p, is the chemical potential, which we
do not know and find from condition that the sum of chemical potentials of all particles
before the reaction is equal to the sum of potentials of all particles after the reaction.
This reflects the fact the sum of all nuclei is preserved. Note that the chemical potential
of relativistic particles (only photons in our case) is zero. For example, for the reaction of

production/destruction of deuterium

n+pe D4y (25)
we have
1D = Hp + . (26)

If Z protons and A — Z neutrons are combined (through a chain of reactions) to produce an

element with atomic weight A and charge Z, then its chemical potential is
pa = Zpp + (A= Z)pin. (27)

We can get rid of p, and p,, by using abundance of neutrons and protons before the reactions

started:

n, = 2 <mPT)3/2 exp {—M} (28)

2m T
T\ 3/2 S
n, = 2 <ﬂ;];T ) exp {—M} : (29)

Using the definition of the abundance X4 we can write the comoving number-density as

na= (%) (i + ) = (%) - (30)

where 1 = Nparyons/M. Combining ny, n, and n,, expressions, we find the equilibrium abun-

dance of element A:

ET

2
mMy,C

3(A-1)/2 B
) nA_lXpZX;?_Z exp [—A] , (31)

X, = F(A) ( =
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Fig. 4.2: The NSE mass fractions for the system of n, p, D, 3He, *He, and 2C as a
function of temperature. For simplicity we have taken X, = X,.

where F'(A) is a numerical factor (F' ~ 1) and B, is the binding energy of element A:

Ba = (Zm, + (A — Z)m,, — mz)c*. For deuterium and helium we find:

kT \*? Bp
Xp = 16.3 X, X, —, 32
P (mpCQ) T P [kT} ( )
kT \ 2 By
Xy = 113 3X2X7? °l. 33
H (mpc2) 77 p neXp |: kT :| ( )

Note that 74~ is a very small number.

At KT = 0.3MeV the equilibrium mass fraction of helium is &~ 0.15. soon after that
nuclear reactions go out of equilibrium because of the Coulomb barrier and because of very
low abundances of D, T>He. At kT ~ 0.1 MeV the abundance of “freeze-out” deuterium is

D/p ~ 107 and almost all neutrons ended up in helium.
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Big Bang Nucleosynthesis 9
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Fig. 4.3: The development of primordial nucleosynthesis. The dashed line is the
baryon density, and the solid lines are the mass fraction of *He, and the number abun-
dance (relative to H) for the other light elements.
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Figure 2: Abundances expected for the light nuclei “He, D, 3He and "Li
(top to bottom) calculated in standard BBN. New estimates of the nuclear
cross-section errors from Burles et al. (1999a) and Nollet & Burles (1999)
were used to estimate the 95% confidence intervals which are shown by the
vertical widths of the abundance predictions. The horizontal scale, n, is the
one free parameter in the calculations. It is expressed in units of the baryon
density or critical density for a Hubble constant of 65 kms™"Mpc™. The
95% confidence intervals for data, shown by the rectangles, are from Izotov
and Thuan 1998a (*He); Burles & Tytler 1998a (D); Gloeckler & Geiss 1996
(*He); Bonifacio and Molaro 1997 ("Li extended upwards by a factor of two
to allow for possible depletion).
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