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1 THE THERMAL HISTORY OF THE UNIVERSE

At very early epochs of the Universe interactions between different particles we so frequent

that particles can be considered being in nuclear equilibrium at each moment of time. In

equilibrium the rate of creation of particles is equal to the rate of their destruction. For

example, if me is the mass of electron, then for moments when kT � mec
2 the abundance

of electrons and positrons is kept in equilibrium by reactions e− + e+ ⇐⇒ γ + γ.

For photos in equilibrium the mean number per unit volume per mode is given by the

occupation numbers:

N =
1

e~ω/kT − 1
. (1)

In order to find the number of photons with different frequencies in a cubic volume V = L3

we count all photons (plane waves) with wavenumbers:

~k =
2π

L
~n, ~n = {nx, ny, nz}. (2)

Here ~n = {nx, ny, nz} is a triplet of integer numbers. The number of photons in volume V

with ~k in the range d3k is a product (occupation number)x(number of modes)x(number of

polarization states):

L3n(ω)dω = 2 · N · L3

(2π)3
=

L3

π2c3

ω2dω

e~ω/kT − 1
. (3)

Here we used k = ω/c and d3k = 4πk2dk. This is the Planck formula:

n(ω) =
ω2

π2c3(e~ω/kT − 1)
. (4)

This can be integrated over all frequencies to give the total number of photonsnγ per unit
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volume:

nγ =
2ζ(3)

π2

(kT )3

(~c)3
= 414

(
T

2.726K

)3

. (5)

Here ζ(x) is the Riemann function: ζ(3) ≈ 1.202. The specific entropy of radiation is s =

(4/3)aγT
3. Thus the entropy of radiation and the number of photons are proportional one

to the other.

For t > 1sec when kT < 1GeV the comoving number-number density of baryons (pro-

tons and neutrons in all atoms) is preserved. The comoving number-density of photons is

preserved after electron-positron annihilation epoch kT ≈ 0.5MeV. The ratio of the number

of baryons nB to the number of photons ηnB/nγ is an important number characterizing our

Universe:

nB =
3H2

0

8πG

Ωb

mp

(
T

T0

)3

, (6)

and

η =
nB

nγ

=
3π(~c)3

16ζ(3)

ΩbH
2
0

Gmp(kT0)3
. (7)

Numerically η ∼ 10−10. So, it is a very small number.

These derivations were done for one type of particles – photons. The same type of analysis

is valid for all relativistic bosons.

In more general case one can write the occupation number as:

N =
1

e(E−µ)/kT ± 1
. (8)

Here the “+” sign is for fermions (e.g. electrons, protons, neutrons) that obey the Fermi-

Dirac distribution. The “-” sign is for bosons (e.g., photons, neutrinos, gluons, W and Z

bosons,Higgs boson, mesons, deuterium, helium-4) that obey the Bose-Einstein distribution.

The energy E is related with momentum p and particle mass: E2 = (cp)2+(mc2)2. Chemical

potential µ defines the number of particles for non-relativistic case kT � mc2. For relativistic

particles µ = 0 and their number is defined solely by the temperature.

If we know the temperature, we can find the number-density (n) and the mass density

(ρ) for bosons and fermions. We also need to know the statistical weight g of particles. For

example, for photons the statistical weight is g = 2 to account for two polarizations. For

fermions the statistical weight is given by the spin (which is half-integer). For electrons the

spin is l = 1/2 and statistical weight is 2l + 1 = 2. Neutrino has spin 1/2, but there are
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neutrinos and anti neutrinos and there are three types of neutrinos. So, statistical weight of

all neutrinos is 6. For relativistic particles (kT � mc2) the number-density and mass-density

are:

n =


ζ(3)
π2

(
k
~c

)3 · gT 3, for bosons,

3
4

ζ(3)
π2

(
k
~c

)3 · gT 3, for fermions.
(9)

ρc2 =

 π2k4

30~3c3
· gT 4, for bosons,

7
8

π2k4

30~3c3
· gT 4, for fermions.

(10)

For nonrelativistic particles (kT � mc2)

n = g
(2πmkT )3/2

(2π~)3
exp

[
(µ−mc2)

kT

]
. (11)

At very early epochs (t < 1 sec) the main contribution to the density is due to relativistic

particles. If g∗ is the effective (total) statistical weight of particles in equilibrium, than the

relation between density and temperature is given by:

ρc2 =
π2k4

30~3c3
· g∗T 4, (12)

where

g∗ =
∑

bosons

gi +
7

8

∑
fermions

gj. (13)

Here is an example. For 1MeV < kT <100MeV relativistic particles are photons, electrons,

positrons, and neutrinos. Thus the statistical weight is g∗ = 2 + (7/8)(2 + 2 + 3 · 2) = 10.75.

Here the first term is for photons (two polarizations). The next two are for electrons and

positrons (each has spin 1/2) and the last term is for three types of neutrinos (electron, muon

and tau) each with neutrino and anti-neutrino. Note that there are no anti-protons: they

annihilated with most of protons at kT ≈ 1GeV. Contribution of protons and neutrons to the

mass-density is very small. First, because they are not in equilibrium (too low temperature).

Second, because most of protons disappeared during proton-antiproton annihilation. Not all

protons annihilated because there is an asymmetry in nuclear rates producing protons and

antiprotons.
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2 FREEZE-OUT OF PARTICLE INTERACTIONS

At some moment the rate of nuclear reactions becomes slow as compared to the rate of

expansion leading to the “freeze-out” of particle concentrations. At this moment reactions

effectively stop operating and the comoving number-density of particles becomes constant.

An example of this freeze-out is the concentration of neutrinos. At early times the neu-

trinos were kept in equilibrium with all other particles (including photons, electrons and

positrons) thanks to reactions such as e− + e+ ⇐⇒ ν + ν̄, ν + e− ⇐⇒ ν + e−. The cross-

section of these reactions is σν = G2
F T 2, where GF = (292GeV )−2 is the Fermi constant. The

number of reactions per neutrino per unit time is Γν = nσνc. For n ∝ T 3 and σν ∝ T 2 we

have Γν ∝ T 5, which is a very steep decline with increasing expansion parameter a ∝ T−1.

Compare this with the rate of expansion: H2 ∝ ρ ∝ T 4, which gives H ∝ T 2 - a much slower

decline. At T = 1MeV neutrinos decoupled from the rest of the particles. From that moment

on their comoving number-density is preserved and temperature declined as Tν ∝ a−1.

A bit later, at T = 0.5MeV, the electrons and positrons annihilated leaving behind

a small fraction of electrons to pair with protons. Electron-positron annihilation dumped

their energy into photons, but not to neutrinos because neutrinos went out of equilibrium

earlier. Simple estimates how much this affected the photon entropy show that the ratio of

temperature of neutrinos to the temperature of photons should be

Tν =

(
4

11

)1/3

Tγ. (14)

This gives Tν = 1.95K. We can find the contribution of the neutrinos to the density of

the relativistic particles at present: ρνc
2 = (7/8)3aγT

4
ν = 3(7/8)(4/11)4/3aγT

4
γ . Here the

factor 7/8 comes from the fact that neutrinos are fermions and factor 3 is for three types of

neutrinos. We can find the ratio of the densities of non-relativistic to relativistic particles

and the moment of equality:

ΩNR

ρRel

= 1.88× 10−29 Ωmh2

a3

a4

1.68aγT 4
γ,0

, (15)

1 + zeq = 2.3× 104Ωmh2. (16)
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3 FREEZE-OUT OF THE NEUTRON-PROTON RATIO

Another example of the “freeze-out” is the ratio of neutrons to protons at t = 1 − 10 sec.

At early times (T > 1MeV) protons and neutrons were in equilibrium thanks to reactions

e+ + n ⇔ p + ν̄e and e− + p ⇔ n + νe. Note that neutrons are slightly more massive

than protons by ∆mc2 = 1.28MeV. So, in equilibrium there should be more protons than

neutrons:

nn

np

≈ e−
∆mc2

kT . (17)

When temperature was much bigger than kT = 1.29MeV the number of neutrons to the

number of all baryons was about 1/2. By t ≈ 1 sec the equilibrium ratio was nn/(nn +np) ≈

1/6. However, the reactions that kept neutrons in equilibrium started to be not fast enough

leading to much larger abundance of neutrons because the weak reactions that kept neutrons

in equilibrium involve neutrinos that get out of equilibrium at the same time. The residual

concentration of neutrons at t ≈ 2 sec was nn/(nn + np) ≈ 1/6.

Free neutrons are unstable particles with exponential decay time τn ≈ 15min. By t =

100 sec when the Big Bang nucleosynthesis took place, the ratio of neutrons to baryons was

nn

np

≈ 1

7
. (18)

4 BIG BANG NUCLEOSYNTHESIS

Epoch of Big Bang Nucleosynthesis (BBN): time t ≈ 100 sec; temperature kT ≈ 0.1MeV.

Involved particles:

particle composition binding energy, MeV

2H = D (p, n) 2.2

3H = T (p, 2n) 6.92 (19)

3He (2p, n) 7.72

4He (2p, 2n) 28.3

(20)
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Dominant nuclear reactions:

n + p ⇔ D + ν,

D + n ⇔ T + γ,

D + D ⇔ T + p, (21)

D + D ⇔ 3He + n,

3He + n ⇔ T + p,

T + D ⇔ 4He + n.

Note that D + D ⇔ 4He + γ does not play a role because of very small cross-section. The

bottleneck of this chain of reactions is the deuterium because it has a low binding energy:

once produced, it can easily be destroyed. Another peculiarity of our world is the absence of

stable elements with atomic weights 5 or 8, which makes production of elements heavier than

helium difficult. There are stable elements with atomic weights 6 and 7: 6Li,7Li,7Be. Two of

those can be produced in small amounts in BBN: 4He+T ⇔ 7Li+γ and 4He+3He⇔ 7Be+γ.

Precense of free neutrons is crucial for BBN. Without neutrons there would be no helium

because normal p + p ⇒ D + e+ + ν + γ is too slow because the reaction requires weak

interaction at the moment of close collision of protons making the cross-section of the reaction

very small.

Let’s define the abundance of different elements as the fraction of mass in element A as

compared with all baryons (neutrons and protons) in all nuclei:

XA =
AnA∑

all nuclei(nn + np)
. (22)

For example, abundance of helium by mass Y for plasma with hydrogen, helium and carbon

is Y = 4nHe/(np + 4nHe + 12nC).

We can estimate the abundance of helium predicted by BBN by simply assuming that

all free neutrons are locked up in helium at the and of BBN. Thus, the abundance of helium

is 1/2 of the abundance of neutrons before the onset of BBN. Because the initial ratio of

neutrons is nn/np = 1/7, the predicted helium abundance is

Y =
4(nn/2)

nn + np

= 0.25. (23)

We start our treatment of BBN reactions assuming the nuclear equilibrium. The equilib-

c© 0000 RAS, MNRAS 000, 000–000
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rium abundance of a non-relativistic element with atomic weight A and charge Z is defined

by (we use k = 1 and c = 1 units):

nA = gA

(
mAT

2π

)3/2

exp

[
−ma − µa

t

]
, (24)

where gA is the statistical weight of element A and µa is the chemical potential, which we

do not know and find from condition that the sum of chemical potentials of all particles

before the reaction is equal to the sum of potentials of all particles after the reaction.

This reflects the fact the sum of all nuclei is preserved. Note that the chemical potential

of relativistic particles (only photons in our case) is zero. For example, for the reaction of

production/destruction of deuterium

n + p⇔ D + γ (25)

we have

µD = µp + µn. (26)

If Z protons and A−Z neutrons are combined (through a chain of reactions) to produce an

element with atomic weight A and charge Z, then its chemical potential is

µA = Zµp + (A− Z)µn. (27)

We can get rid of µp and µn by using abundance of neutrons and protons before the reactions

started:

np = 2

(
mpT

2π

)3/2

exp

[
−(mp − µp)

T

]
, (28)

nn = 2

(
mpT

2π

)3/2

exp

[
−(mn − µn)

T

]
. (29)

Using the definition of the abundance XA we can write the comoving number-density as

nA =

(
XA

A

)
(nn + np) =

(
XA

A

)
ηnγ, (30)

where η = nbaryons/nγ. Combining nA, np and nn expressions, we find the equilibrium abun-

dance of element A:

XA = F (A)

(
kT

mpc2

)3(A−1)/2

ηA−1XZ
p XA−Z

n exp

[
BA

kT

]
, (31)
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where F (A) is a numerical factor (F ∼ 1) and BA is the binding energy of element A:

BA = (Zmp + (A− Z)mn −mZ)c2. For deuterium and helium we find:

XD = 16.3

(
kT

mpc2

)3/2

ηXpXn exp

[
BD

kT

]
, (32)

XHe = 113

(
kT

mpc2

)9/2

η3X2
pX2

n exp

[
BHe

kT

]
. (33)

Note that η(A−1) is a very small number.

At kT = 0.3MeV the equilibrium mass fraction of helium is ≈ 0.15. soon after that

nuclear reactions go out of equilibrium because of the Coulomb barrier and because of very

low abundances of D, T,3He. At kT ≈ 0.1MeV the abundance of “freeze-out” deuterium is

D/p ≈ 10−5 and almost all neutrons ended up in helium.
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