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Silk dumping

19 February 2018

1 SILK DAMPING: PHOTON DIFFUSION AT SMALL SCALES

Before the recombination photons provide the pressure support for waves in baryons. So far

we treated photons as an ideal fluid, which is a good approximation for long waves. At very

small scales photons can experience diffusion and that will reduce the pressure resulting in

decline of the amplitude of acoustic waves.

The diffusion originates from random jumps of photons between collisions with electrons.

The mean-free path for the photons is defined by the Thompson cross-section σT and electron

density ne:

λγ =
1

σT ne

. (1)

In turn, the electron density is defined by ionization state and gas density:

ne = xenH = xeρbΩbar/mH . (2)

We need to find the typical scale λSilk(t) over which photons diffuse by the moment t.

The amplitude of fluctuations is significantly reduced for all waves shorter than λSilk. We

estimate the effect of photon diffusion using the random walk approximation.

There is one complication in applying the standard random walk formulas: the mean-free-

path changes (increases) with time. So, we need to integrate the diffusion equation over time.

Per time interval ∆t a photon experiences N collisions with electrons where N = c∆t/λγ.

Note that λγ in eq. (1) is the proper (physical) distance. In order to estimate the effect in the

expanding Universe, we need to sum effects of diffusion in comoving coordinates at different

moments of time. At an expansion parameter a and during time interval dt the comoving

mean-free-path is ∆x1 = λγ(a)/a. Over dt time interval the photons diffuse by

∆x2(dt, t) = N∆x2
1 =

cdt

λγ
·
(

λγ(a)

a

)2

. (3)

Now we can integrate this over time to find the total photons diffusion distance and the
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comoving scale of Silk damping:

λ2
Silk(t) =

∫ t

0

cdt

λγ(t)

λ2
γ(t)

a2
≈ ct · λγ(t)

a2
. (4)

The last estimate is a good approximation because most of the diffusion happens close to

the upper limit of the integral.

Numerically the damping scale at the moment of recombination is equal to

λSilk ≈ 5.7
(

Ωm,0h
2
)−3/4

(

Ωbar,0

Ωm,0

)−1/2 (

Xe

0.1

)−1/2 (

1 + zrec

1100

)−5/4

Mpc, (5)

where Xe is the ionization fraction at z = zrec. This damping suppresses angular fluctuations

in CMB on scales less than few arcminutes.

2 RANDOM WALK APPROXIMATION FOR BROWNIAN MOTION

If a particle (photon in our case) experiences random scattering every time it collides with

another particle (electron in our case), then over time interval t its average distance from

the initial position x is equal to zero: 〈x〉 = 0. This simply means that there is no preferred

direction for diffusion of the particle. For example, as many particles diffuse to the right

(x > 0) as to the left (x < 0). However, the dispersion of this distance is not zero. It is equal

to

〈x2〉 = 2Dt, (6)

where D is the diffusivity coefficient. This coefficient appears in the equation of thermal

diffusion:

∂ρ(~x, t)

∂t
= D∇2ρ(~x, t) (7)

Here is a simple example of solution of this equation. Imagine that at initial moment t = 0

we put N particles at rest at r = 0. They start to random walk and at any later moment

their number-density profile is

n(r, t) =
N

(4πDt)3/2
e−

r
2

4Dt (8)

In our case it is more convenient and more transparent to write the random approxima-

tion in a different form. If N is the average number of scattering experienced by a particle

and ∆1 is the average distance the particle travels between scatterings, then the dispersion

of the distance from the initial position is

〈∆x2〉 = N∆2
1. (9)

Note that in this case the typical distance from the initial position scales x ∝
√

N .
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