10-43 sec. Planck time. Inflation begins

10⁻³² sec End of Inflation: origin of fluctuations. Flat and hot Universe

Arrow of time

1 sec. T=1Mev. Neutrino decouple from the rest of matter. Composition: relativistic particles dominate: gamma, neutrino, electrons, positrons. Nonrelativistic particles: protons, neutrons, DM

100 sec. T=0.1Mev. BBN: all neutrons are in He. Composition after BBN: γ and ν dominate. Nonrelativistic particles: p, He, e, DM: subdominant.

z=3000 Moment of equality: density of relativistic particles (γ and ν) is equal to the density of nonrelativistic particles. Fluctuations in DM on all scales grow with the same rate.

z=1100. T=3000K=0.3eV. Recombination and decoupling. Photons start to travel freely. Gas is mostly neutral.

z=10. First massive galaxies and supermassive black holes.

- z=7. Universe is fully re-ionized.
- z=2. Last major-merger for our Galaxy. Last stars formed in E galaxies in clusters. z=0.5 Sun is formed.

Evolution of perturbations at early times: linear growth

Inflation provides very a simple spectrum of fluctuations: gaussian fluctuations in metrics (=gravitational potential): $(\Delta \phi)^2 \propto \text{constant}$ when averaged over spheres of radius R.

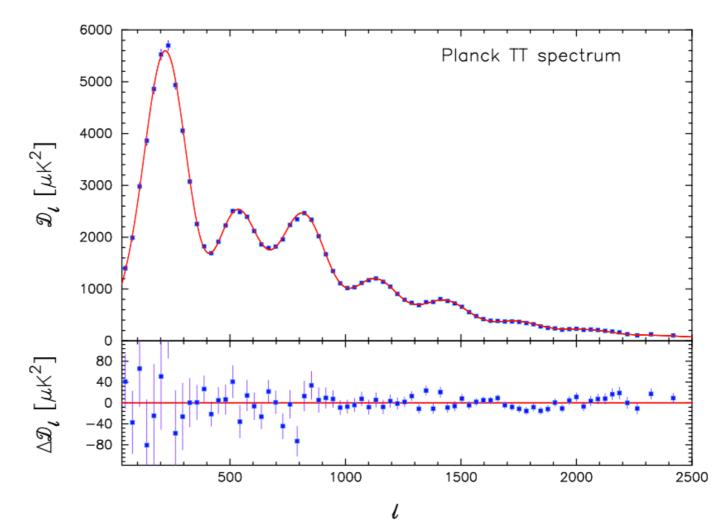
This gives the power spectrum of fluctuations in the density $P(k) \propto k$, where k is a wavenumber

After Inflation

After moment of equality

 $P(\mathbf{k}) = \left| \delta(\mathbf{k}) \right|^2$

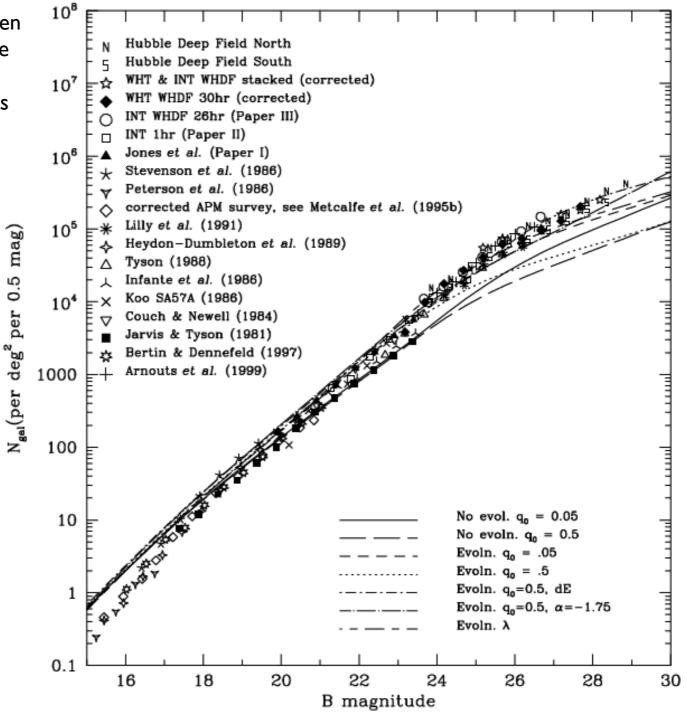
Nonlinear effects

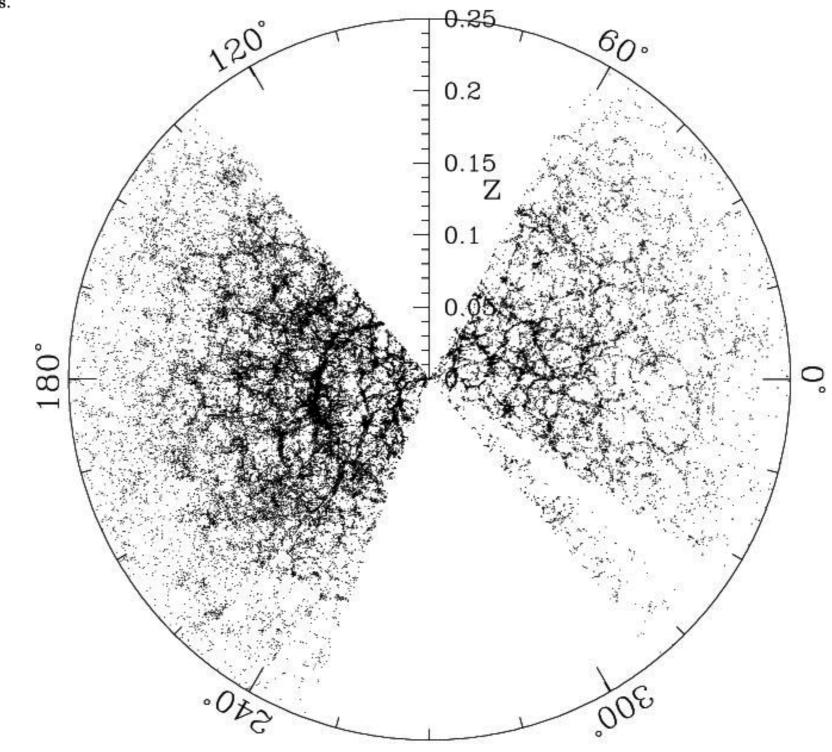

- Zeldovich approximation: collapsing waves in a cold (=low random velocities) fluid produce a web of filaments: r(t) =r₀+v(r₀)t
- Virialization tends to produce spherical objects
- Dynamical friction produces merging of halos
- On scales larger than 20kpc the only thing which dynamically matters is the dark matter

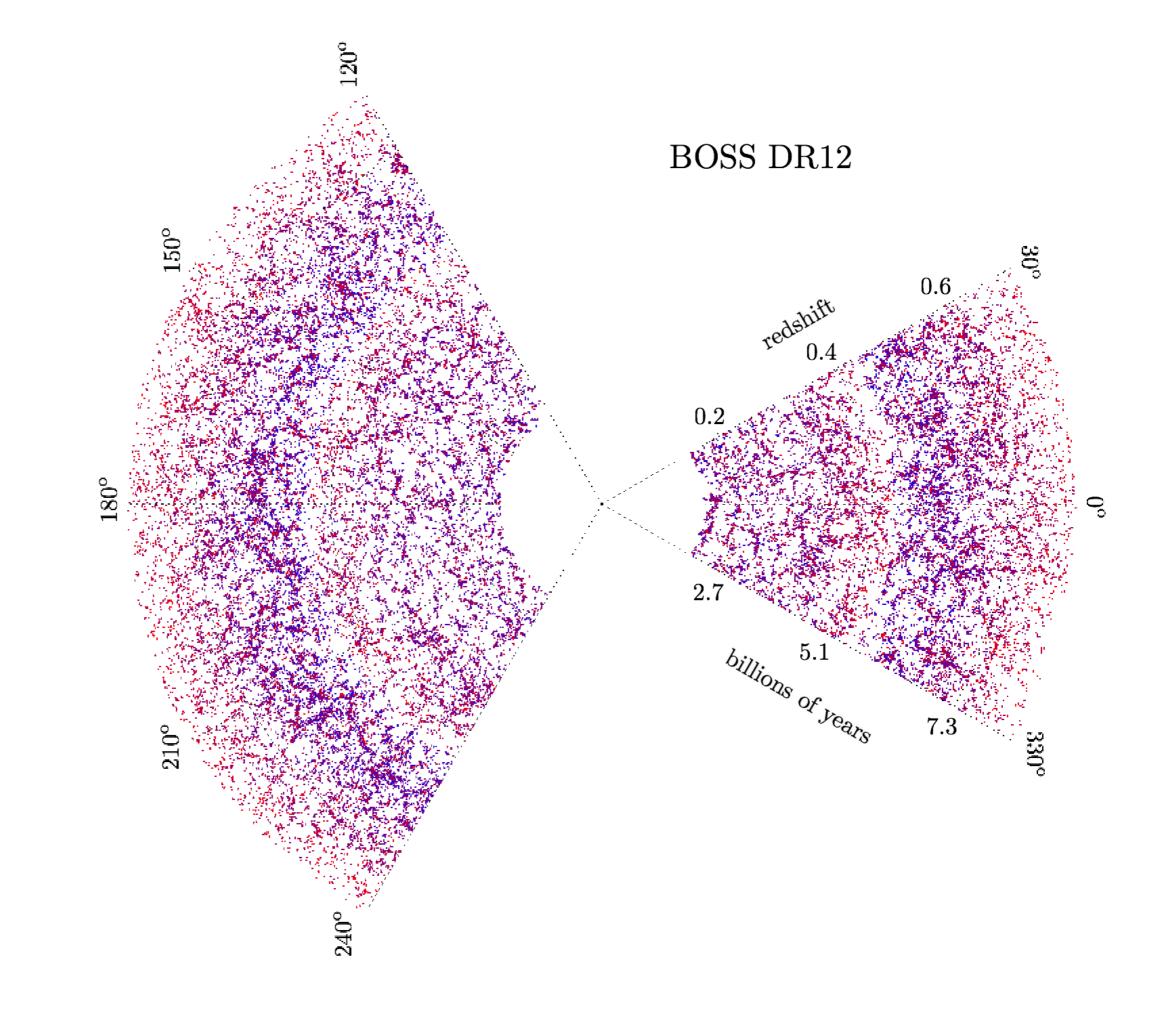
Probing different epochs with observations

Epoch	Phenomenon	Test
Inflation	Spectrum of perturbation on very long scales	 Large-scale CMB anisotropies Large-scale spectrum of perturbation in distribution of galaxies
Moment of equality	Position of maximum in the spectrum of perturbations	Distribution of galaxies: Spectrum, sizes of large voids, Superclusters.
BBN	abundance of light elements: He, D, Li	ISM, stellar atmospheres, spectra of high-z galaxies
Recombination	Small-scale structure of CMB	CMB anisotropies on armin -degree scales
Acceleration of the Universe	Distances depend on the rate of expansion	Distances to SNI
	Dark matter	 Rotation curves of galaxies Possible annihilation signal from centers of galaxies X-ray emission from clusters of galaxies Lensing of galaxies

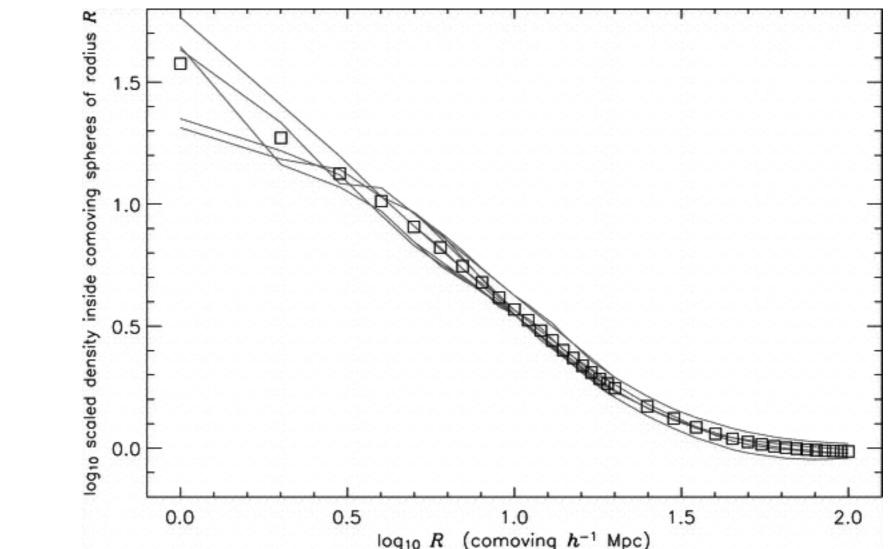
Isotropy and Homogeneity of the Universe


- – galaxies: Deep counts of galaxies $m_B > 18$ show only small variations of the number of galaxies in different directions in the sky. Note that there are large variations along the line-of-sight.
- – radio sources: Those are typically in galaxies. Counts are very deep and show high level of isotropy $(\Delta N/N < 10^{-3})$.
- - X-ray background: Typically unresolved AGNs. Background is isotropic at 1 percent level.
- – Cosmic Microwave Background (CMB): isotropic to the level $\Delta T/T \sim 10^{-5}$. Deviations from the isotropy are well studied. The largest deviation is the dipole, which is due to the motion of the Local Group relative to CMB: $V_{\text{dipole}} \approx 650 \text{km s}^{-1}$.


Planck Collaboration: Cosmological parameters


Homogeneity of the Universe

•Deep counts of galaxies provided the first observational arguments for homogeneity of the Universe. If the distribution of galaxies is homogeneous and galaxies are not evolving, then the number of galaxies with apparent magnitude m should scale 10^{0.6m}. Indeed, this is what is observed up to some magnitude. When counts are too deep, galaxies are preferentially at very large redshifts where the evolution cannot be neglected.

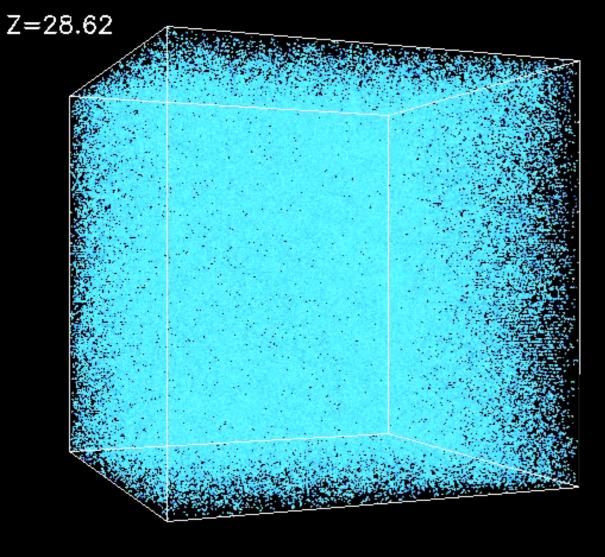


- – SDSS: about 10,000 sq.deg on the sky; for galaxies the depth: z < 0.4
- – SDSS: about 10,000 sq.deg on the sky; 50,000 QSOs with z < 5
- - 2dF: two strips on the sky
- – anisotropy of CMB: WMAP and others.

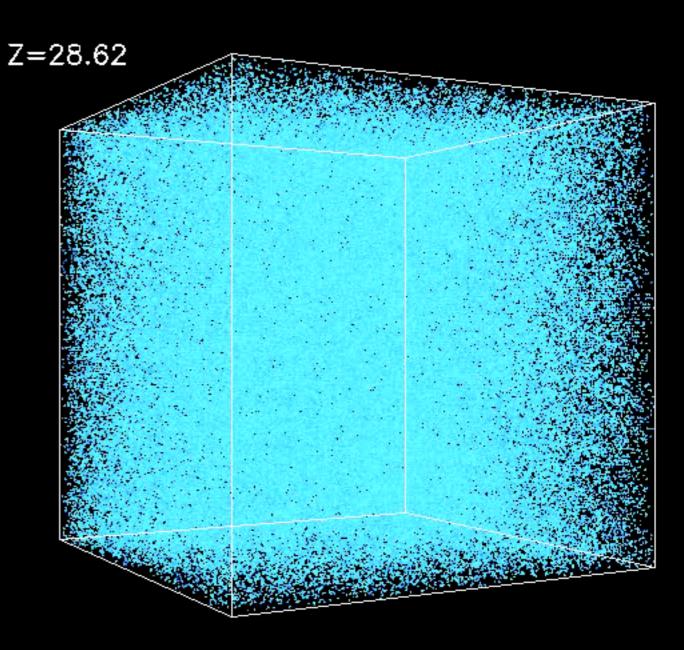
- SDSS tested homogeneity of distribution of luminous red galaxies (LRG). Average numberdensity of LRGs inside a sphere of radius R approaches constant for $R > 30h^{-1}$ Mpc. There are very strong inhomogeneity at smaller scales. Disjoin regions on the sky of size $\sim 2 \times 10^7 h^{-1}$ Mpc³ have variations of 7 percent around the mean density: clear sign of homogeneity on large $\approx 30 - 50h^{-1}$ Mpc scales.
- 2dF catalog and SDSS: measurements of the correlation function and the power spectrum of galaxies.

Average comoving number density (i.e., number counted divided by expected number from a homogeneous random catalog) of LRGs inside comoving spheres centered on the 3658 LRGs shown in Fig. 1, as a function of comoving sphere radius R. The average over all 3658 spheres is shown with squares, and the averages of each of the five R.A. quantiles are shown as separate lines. At small scales, the number density drops with radius, because the LRGs are clustered; at large scales, the number density approaches a constant, because the sample is homogeneous.

Hogg et al 2005


Global parameters of the Universe

- H = 70 km/s/Mpc
- Age of the Universe 13.5Gyrs
- Slope of the spectrum of perturbations $n = 0.99 \pm 0.04$
- Normalization of the power spectrum of fluctuations $\sigma_8 = 0.9 \pm 1$
- $\Omega_b h^2 = 0.024 \pm 0.001$ • Total baryons
- $\Omega_m h^2 = 0.14 \pm 0.02$ • Total matter


Cosmic Inventory

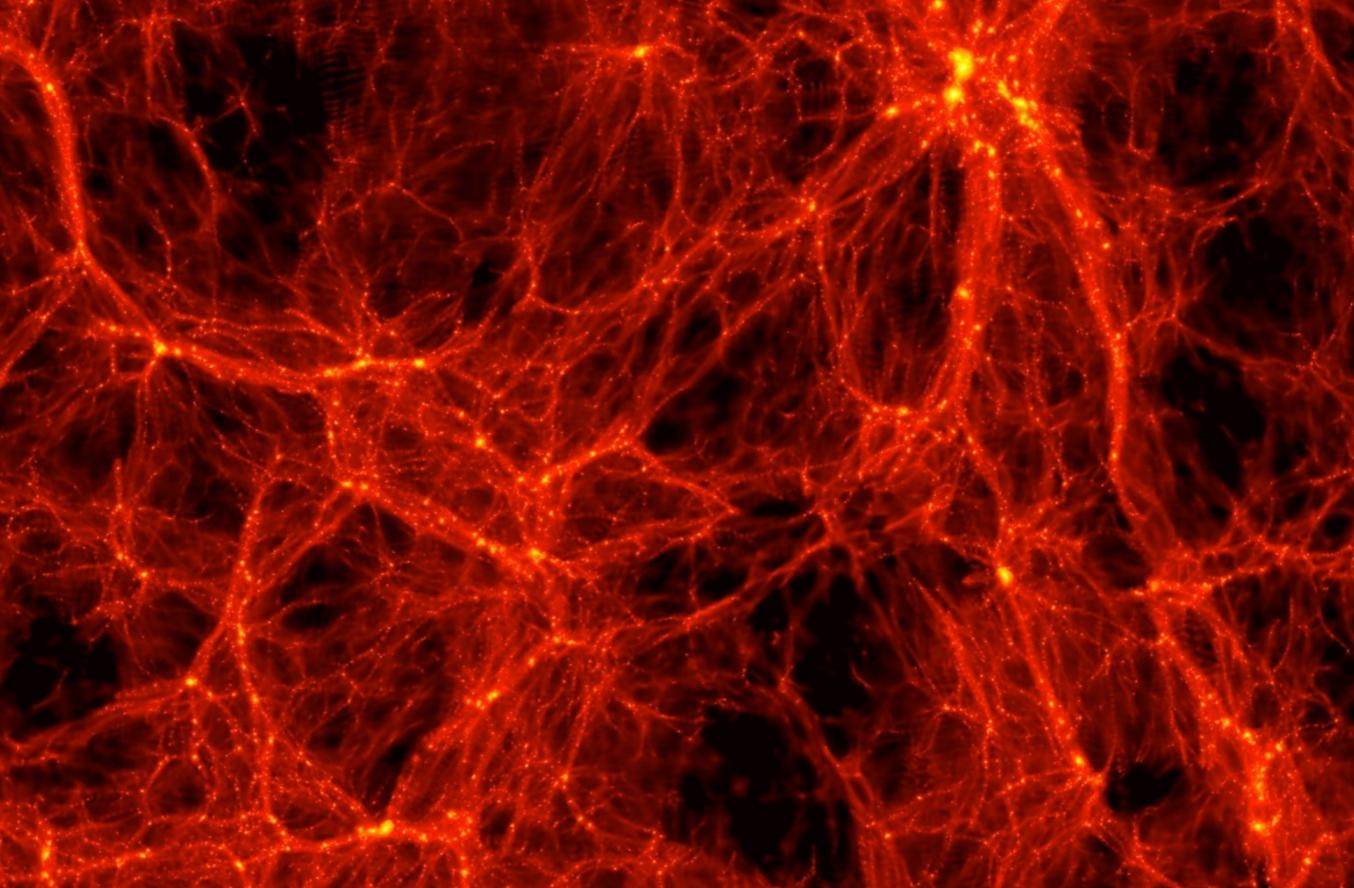
• Dark energy		0.72 ± 0.03	• Baryons		0.045 ± 0.003
• Dark matter		0.23 ± 0.03	• Warm intergalactic plasma		0.040 ± 0.003
• primeval grav. waves	<	10^{-10}	• Virialized regions of galaxies		0.024 ± 0.005
- 0			• Stars		$\Omega_{stars} = 0.0027 \pm 0.0005 \text{ (SDSS, 2dF, 2MASS)}$
• Total dark sector	0.954		• Stars contain	6.0 ±	1.3 percent of all baryons
•			• Clusters of galaxies with mas	s > 5	$ imes 10^{13} { m M}_{\odot}: \; \Omega_{cl} = 0.012 \pm 0.03$
• Electromagnetic radiation		$10^{-4.3\pm0.0}$	•		
• Neutrinos		$10^{-2.9\pm0.1}$	• Luminosity density		
			•	1	$L_B = (1.9 \pm 0.2) imes 10^8 h L_\odot M p c^{-3}$
			•	1	$D_r = (2.3 \pm 0.2) imes 10^8 h L_{\odot} M p c^{-3}$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Planck		Planck+lensing		Planck+WP	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Parameter	Best fit	68% limits	Best fit	68% limits	Best fit	68% limits
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Omega_{ m b}h^2$	0.022068	0.02207 ± 0.00033	0.022242	0.02217 ± 0.00033	0.022032	0.02205 ± 0.00028
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Omega_{ m c}h^2$	0.12029	0.1196 ± 0.0031	0.11805	0.1186 ± 0.0031	0.12038	0.1199 ± 0.0027
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100θ _{MC}	1.04122	1.04132 ± 0.00068	1.04150	1.04141 ± 0.00067	1.04119	1.04131 ± 0.00063
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	τ	0.0925	0.097 ± 0.038	0.0949	0.089 ± 0.032	0.0925	$0.089^{+0.012}_{-0.014}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>n</i> _s	0.9624	0.9616 ± 0.0094	0.9675	0.9635 ± 0.0094	0.9619	0.9603 ± 0.0073
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\ln(10^{10}A_{\rm s})$	3.098	3.103 ± 0.072	3.098	3.085 ± 0.057	3.0980	$3.089^{+0.024}_{-0.027}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ω_{Λ}	0.6825	0.686 ± 0.020	0.6964	0.693 ± 0.019	0.6817	$0.685^{+0.018}_{-0.016}$
$ \begin{array}{c} z_{\rm e} \hfill 11.35 & 11.4^{\pm 0.0}_{\pm 2.8} & 11.45 & 10.8^{\pm 3.1}_{\pm 2.5} & 11.37 & 11.1 \pm 1.1 \\ \hline H_0 \hfill 67.4 \pm 1.4 & 68.14 & 67.9 \pm 1.5 & 67.04 & 67.3 \pm 1.2 \\ \hline 10^9 A_8 \hfill 2.215 & 2.23 \pm 0.16 & 2.215 & 2.19^{\pm 0.12}_{-0.14} & 2.215 & 2.196^{\pm 0.051}_{-0.060} \\ \hline \Omega_m h^2 \hfill 2 $	$\Omega_{\rm m}$	0.3175	0.314 ± 0.020	0.3036	0.307 ± 0.019	0.3183	$0.315^{+0.016}_{-0.018}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma_8 \ldots \ldots$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1 10			11.37	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		67.11	67.4 ± 1.4	68.14		67.04	
$\begin{split} & \begin{array}{c} \Omega_m h^3 \dots & 0.09597 & 0.09590 \pm 0.00059 & 0.09603 & 0.09593 \pm 0.00058 & 0.09591 & 0.09589 \pm 0.00058 \\ & \begin{array}{c} \gamma_P \dots & 0.247710 & 0.24771 \pm 0.00014 & 0.247785 & 0.24775 \pm 0.00014 & 0.247695 & 0.24770 \pm 0.00014 \\ & \begin{array}{c} \Lambda ge/Gyr \dots & 13.819 & 13.813 \pm 0.058 & 13.784 & 13.796 \pm 0.058 & 13.8242 & 13.817 \pm 0.048 \\ & \begin{array}{c} z_* \dots & 1090.43 & 1090.37 \pm 0.65 & 1090.01 & 1090.16 \pm 0.65 & 1090.48 & 1090.43 \pm 0.54 \\ & \begin{array}{c} r_* \dots & 144.58 & 144.75 \pm 0.66 & 145.02 & 144.96 \pm 0.66 & 144.58 & 144.71 \pm 0.60 \\ & \begin{array}{c} 100\theta_* \dots & 1.04139 & 1.04148 \pm 0.00066 & 1.04164 & 1.04156 \pm 0.00066 & 1.04136 & 1.04147 \pm 0.0006 \\ & \begin{array}{c} z_{drag} \dots & 1059.32 & 1059.29 \pm 0.65 & 1059.59 & 1059.43 \pm 0.64 & 1059.25 & 1059.25 \pm 0.58 \\ & \begin{array}{c} r_{drag} \dots & 0.14026 & 0.14007 \pm 0.00064 & 0.13998 & 0.13996 \pm 0.00062 & 0.14022 & 0.14009 \pm 0.0006 \\ & \begin{array}{c} 0.161332 & 0.16137 \pm 0.00037 & 0.161196 & 0.16129 \pm 0.00036 & 0.161375 & 0.16140 \pm 0.0003 \\ & \begin{array}{c} z_{eq} \dots & 3402 & 3386 \pm 69 & 3352 & 3362 \pm 69 & 3403 & 3391 \pm 60 \\ & \begin{array}{c} 100\theta_{eq} \dots & 0.8128 & 0.816 \pm 0.013 & 0.8224 & 0.821 \pm 0.013 & 0.8125 & 0.815 \pm 0.011 \\ & \begin{array}{c} 0.09589 \pm 0.00059 & 0.00059 & 0.00059 & 0.00058 & 0.0058 & 0.0058 & 0.0058 & 0.0058 \\ & \begin{array}{c} 0.09593 \pm 0.00058 & 0.09593 \pm 0.00058 & 0.09591 & 0.09589 \pm 0.00058 & 0.09591 & 0.00058 \\ & \begin{array}{c} 0.09589 \pm 0.00058 & 0.09593 \pm 0.64 & 145.02 & 144.96 \pm 0.66 & 144.58 & 144.71 \pm 0.60 \\ & \begin{array}{c} 0.0005 & 0.14027 & 0.14007 \pm 0.00064 & 0.13998 & 0.13996 \pm 0.00062 & 0.14022 & 0.14009 \pm 0.00068 \\ & \begin{array}{c} 0.0161322 & 0.16137 \pm 0.00037 & 0.161196 & 0.16129 \pm 0.00036 & 0.161375 & 0.16140 \pm 0.0003 \\ & \begin{array}{c} 0.8128 & 0.816 \pm 0.013 & 0.8224 & 0.821 \pm 0.013 & 0.8125 & 0.815 \pm 0.011 \\ & \begin{array}{c} 0.815 \pm 0.011 & 0.8128 & 0.816 \pm 0.013 & 0.8224 & 0.821 \pm 0.013 & 0.8125 & 0.815 \pm 0.011 \\ & \begin{array}{c} 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 \\ & \begin{array}{c} 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 \\ & \begin{array}{c} 0.0005 & 0.015 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 & 0.011 \\ & \begin{array}{c} 0.0005 & 0.015 & 0.011 & 0.011$	$10^{9}A_{s}$	2.215	2.23 ± 0.16	2.215	$2.19_{-0.14}^{+0.12}$	2.215	$2.196^{+0.051}_{-0.060}$
Y_P 0.247710 0.24771 ± 0.00014 0.247785 0.24775 ± 0.00014 0.247695 0.24770 ± 0.00014 Age/Gyr 13.819 13.813 ± 0.058 13.784 13.796 ± 0.058 13.8242 13.817 ± 0.048 z_* 1090.43 1090.37 ± 0.65 1090.01 1090.16 ± 0.65 1090.48 1090.43 ± 0.54 r_* 144.58 144.75 ± 0.66 145.02 144.96 ± 0.66 144.58 144.71 ± 0.60 $100\theta_*$ 1.04139 1.04148 ± 0.00066 1.04164 1.04156 ± 0.00066 1.04136 1.04147 ± 0.0006 z_{drag} 1059.32 1059.29 ± 0.65 1059.59 1059.43 ± 0.64 1059.25 1059.25 ± 0.58 r_{drag} 147.34 147.53 ± 0.64 147.74 147.70 ± 0.63 147.36 147.49 ± 0.59 k_D 0.14026 0.14007 ± 0.00064 0.13998 0.13996 ± 0.00062 0.14009 ± 0.00064 $100\theta_D$ 0.161332 0.16137 ± 0.00037 0.161196 0.16129 ± 0.00036 0.161375 0.16140 ± 0.0003 $2eq$ 3402 3386 ± 69 3352 3362 ± 69 3403 3391 ± 60 $100\theta_{eq}$ 0.8128 0.816 ± 0.013 0.8224 0.821 ± 0.013 0.8125 0.815 ± 0.011	$\Omega_{ m m}h^2\ldots\ldots\ldots\ldots$	0.14300	0.1423 ± 0.0029	0.14094	0.1414 ± 0.0029	0.14305	0.1426 ± 0.0025
Age/Gyr13.81913.813 \pm 0.05813.78413.796 \pm 0.05813.824213.817 \pm 0.048 z_* 1090.431090.37 \pm 0.651090.011090.16 \pm 0.651090.481090.43 \pm 0.54 r_* 144.58144.75 \pm 0.66145.02144.96 \pm 0.66144.58144.71 \pm 0.60 $100\theta_*$ 1.041391.04148 \pm 0.000661.041641.04156 \pm 0.000661.041361.04147 \pm 0.0006 z_{drag} 1059.321059.29 \pm 0.651059.591059.43 \pm 0.641059.251059.25 \pm 0.58 r_{drag} 147.34147.53 \pm 0.64147.74147.70 \pm 0.63147.36147.49 \pm 0.59 k_D 0.140260.14007 \pm 0.000640.139980.13996 \pm 0.000620.140220.14009 \pm 0.0006 $100\theta_D$ 0.1613320.16137 \pm 0.000370.1611960.16129 \pm 0.000360.1613750.16140 \pm 0.0003 z_{eq} 34023386 \pm 6933523362 \pm 6934033391 \pm 60 $100\theta_{eq}$ 0.81280.816 \pm 0.0130.82240.821 \pm 0.0130.81250.815 \pm 0.011	$\Omega_{\rm m}h^3$	0.09597	0.09590 ± 0.00059	0.09603	0.09593 ± 0.00058	0.09591	0.09589 ± 0.00057
z_* 1090.431090.37 \pm 0.651090.011090.16 \pm 0.651090.481090.43 \pm 0.54 r_* 144.58144.75 \pm 0.66145.02144.96 \pm 0.66144.58144.71 \pm 0.60100 θ_* 1.041391.04148 \pm 0.000661.041641.04156 \pm 0.000661.041361.04147 \pm 0.0006 z_{drag} 1059.321059.29 \pm 0.651059.591059.43 \pm 0.641059.251059.25 \pm 0.58 r_{drag} 147.34147.53 \pm 0.64147.74147.70 \pm 0.63147.36147.49 \pm 0.59 k_D 0.140260.14007 \pm 0.000640.139980.13996 \pm 0.000620.140220.14009 \pm 0.0006100 θ_D 0.1613320.16137 \pm 0.000370.1611960.16129 \pm 0.000360.1613750.16140 \pm 0.0003 z_{eq} 34023386 \pm 6933523362 \pm 6934033391 \pm 60100 θ_{eq} 0.81280.816 \pm 0.0130.82240.821 \pm 0.0130.81250.815 \pm 0.011	<i>Y</i> _P	0.247710	0.24771 ± 0.00014	0.247785	0.24775 ± 0.00014	0.247695	0.24770 ± 0.00012
r_* 144.58144.75 ± 0.66 145.02144.96 ± 0.66 144.58144.71 ± 0.60 $100\theta_*$ 1.041391.04148 ± 0.00066 1.041641.04156 ± 0.00066 1.041361.04147 ± 0.00066 z_{drag} 1059.321059.29 ± 0.65 1059.591059.43 ± 0.64 1059.251059.25 ± 0.58 r_{drag} 147.34147.53 ± 0.64 147.74147.70 ± 0.63 147.36147.49 ± 0.59 k_D 0.140260.14007 ± 0.00064 0.139980.13996 ± 0.00062 0.140220.14009 ± 0.00064 $100\theta_D$ 0.1613320.16137 ± 0.00037 0.1611960.16129 ± 0.00036 0.1613750.16140 ± 0.00033 z_{eq} 34023386 ± 69 33523362 ± 69 34033391 ± 60 $100\theta_{eq}$ 0.81280.816 ± 0.013 0.82240.821 ± 0.013 0.81250.815 ± 0.011	Age/Gyr	13.819	13.813 ± 0.058	13.784	13.796 ± 0.058	13.8242	13.817 ± 0.048
$100\theta_*$ 1.04139 1.04148 ± 0.00066 1.04164 1.04156 ± 0.00066 1.04136 1.04147 ± 0.00066 z_{drag} 1059.32 1059.29 ± 0.65 1059.59 1059.43 ± 0.64 1059.25 1059.25 ± 0.58 r_{drag} 147.34 147.53 ± 0.64 147.74 147.70 ± 0.63 147.36 147.49 ± 0.59 k_D 0.14026 0.14007 ± 0.00064 0.13998 0.13996 ± 0.00062 0.14022 0.14009 ± 0.00066 $100\theta_D$ 0.161332 0.16137 ± 0.00037 0.161196 0.16129 ± 0.00036 0.161375 0.16140 ± 0.0003 z_{eq} 3402 3386 ± 69 3352 3362 ± 69 3403 3391 ± 60 $100\theta_{eq}$ 0.8128 0.816 ± 0.013 0.8224 0.821 ± 0.013 0.8125 0.815 ± 0.011	Z* •••••	1090.43	1090.37 ± 0.65	1090.01	1090.16 ± 0.65	1090.48	1090.43 ± 0.54
z_{drag} 1059.321059.29 ± 0.65 1059.591059.43 ± 0.64 1059.251059.25 ± 0.58 r_{drag} 147.34147.53 ± 0.64 147.74147.70 ± 0.63 147.36147.49 ± 0.59 k_D 0.140260.14007 ± 0.00064 0.139980.13996 ± 0.00062 0.140220.14009 ± 0.00064 $100\theta_D$ 0.1613320.16137 ± 0.00037 0.1611960.16129 ± 0.00036 0.1613750.16140 ± 0.0003 z_{eq} 34023386 ± 69 33523362 ± 69 34033391 ± 60 $100\theta_{eq}$ 0.81280.816 ± 0.013 0.82240.821 ± 0.013 0.81250.815 ± 0.011	r	144.58	144.75 ± 0.66	145.02	144.96 ± 0.66	144.58	144.71 ± 0.60
r_{drag} 147.34147.53 ± 0.64 147.74147.70 ± 0.63 147.36147.49 ± 0.59 k_D 0.140260.14007 ± 0.00064 0.139980.13996 ± 0.00062 0.140220.14009 ± 0.00066 $100\theta_D$ 0.1613320.16137 ± 0.00037 0.1611960.16129 ± 0.00036 0.1613750.16140 ± 0.0003 z_{eq} 34023386 ± 69 33523362 ± 69 34033391 ± 60 $100\theta_{eq}$ 0.81280.816 ± 0.013 0.82240.821 ± 0.013 0.81250.815 ± 0.011	100 <i>θ</i> *	1.04139	1.04148 ± 0.00066	1.04164	1.04156 ± 0.00066	1.04136	1.04147 ± 0.00062
k_D 0.140260.14007 \pm 0.000640.139980.13996 \pm 0.000620.140220.14009 \pm 0.0006 $100\theta_D$ 0.1613320.16137 \pm 0.000370.1611960.16129 \pm 0.000360.1613750.16140 \pm 0.0003 z_{eq} 34023386 \pm 6933523362 \pm 6934033391 \pm 60 $100\theta_{eq}$ 0.81280.816 \pm 0.0130.82240.821 \pm 0.0130.81250.815 \pm 0.011	Z _{drag}	1059.32	1059.29 ± 0.65	1059.59	1059.43 ± 0.64	1059.25	1059.25 ± 0.58
$100\theta_{\rm D}$ 0.161332 0.16137 ± 0.00037 0.161196 0.16129 ± 0.00036 0.161375 0.16140 ± 0.00037 $z_{\rm eq}$ 3402 3386 ± 69 3352 3362 ± 69 3403 3391 ± 60 $100\theta_{\rm eq}$ 0.8128 0.816 ± 0.013 0.8224 0.821 ± 0.013 0.8125 0.815 ± 0.011	<i>r</i> _{drag}	147.34	147.53 ± 0.64	147.74	147.70 ± 0.63	147.36	147.49 ± 0.59
z_{eq} 3402 3386 ± 69 3352 3362 ± 69 3403 3391 ± 60 $100\theta_{eq}$ 0.8128 0.816 ± 0.013 0.8224 0.821 ± 0.013 0.8125 0.815 ± 0.011	<i>k</i> _D	0.14026	0.14007 ± 0.00064	0.13998	0.13996 ± 0.00062	0.14022	0.14009 ± 0.00063
z_{eq} 3402 3386 ± 69 3352 3362 ± 69 3403 3391 ± 60 $100\theta_{eq}$ 0.8128 0.816 ± 0.013 0.8224 0.821 ± 0.013 0.8125 0.815 ± 0.011	100 <i>θ</i> _D	0.161332	0.16137 ± 0.00037	0.161196	0.16129 ± 0.00036	0.161375	0.16140 ± 0.00034
*1		3402	3386 ± 69	3352	3362 ± 69	3403	3391 ± 60
$r_{\rm drag}/D_{\rm V}(0.57)$ 0.07130 0.0716 ± 0.0011 0.07207 0.0719 ± 0.0011 0.07126 0.07147 ± 0.0009	$100\theta_{eq}$	0.8128	0.816 ± 0.013	0.8224	0.821 ± 0.013	0.8125	0.815 ± 0.011
	$r_{\rm drag}/D_{\rm V}(0.57)$	0.07130	0.0716 ± 0.0011	0.07207	0.0719 ± 0.0011	0.07126	0.07147 ± 0.00091

Non-linear evolution: from Zeldovich approximation to DM halos

Formation of a MVsize halo

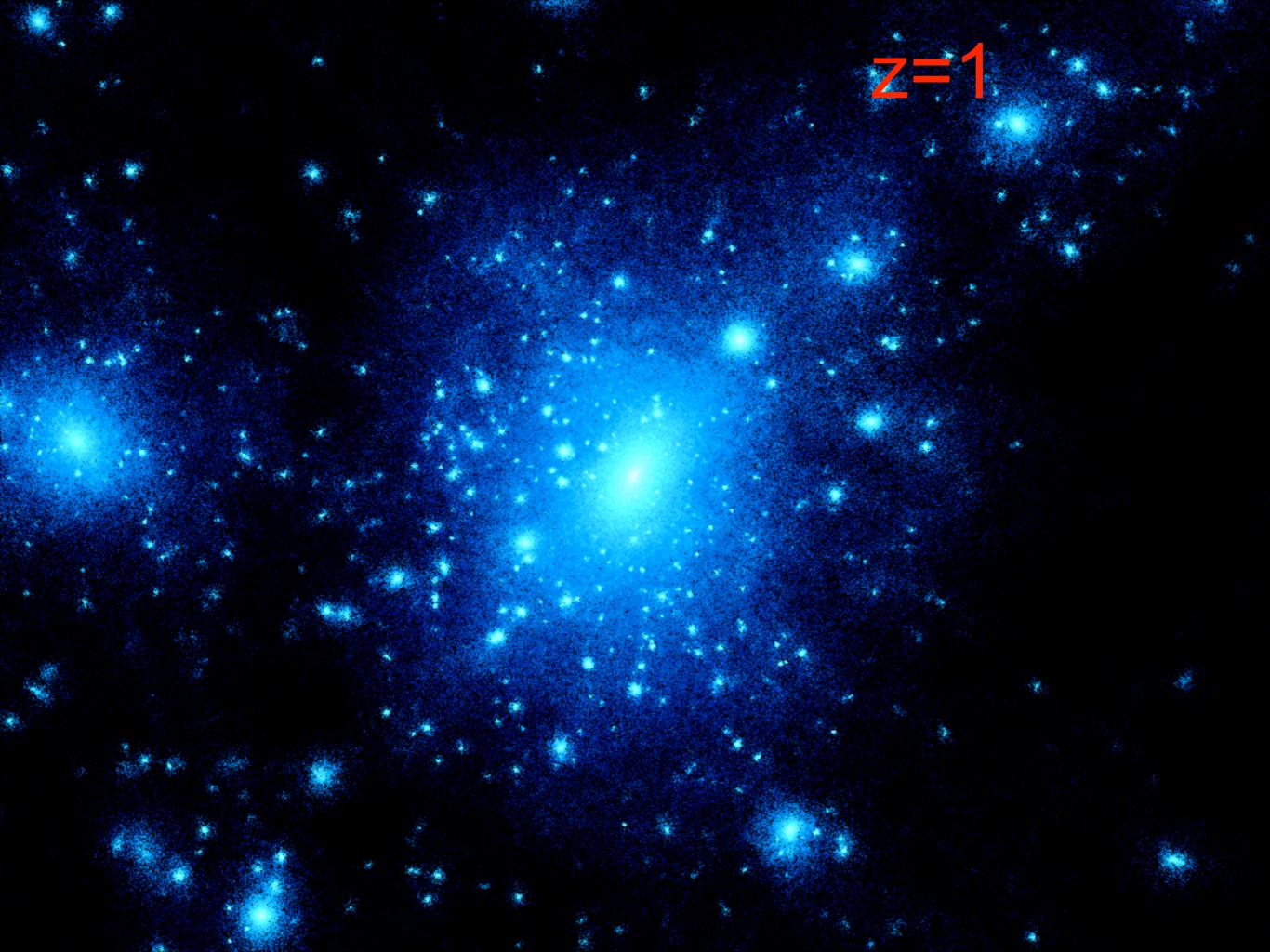
Z = 40.52



Klypin, Kravtsov

0.5Mpc

LSS: 300Mpc


Ben Moore: PKDGRAV

ART: IOMpc

Local Group:z=0

Local Group:z=7