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ABSTRACT
We present a new high-resolution N-body algorithm for cosmological simulations. The algorithm

employs a traditional particle-mesh technique on a cubic grid and successive multilevel relaxations on
the Ðner meshes, introduced recursively in a fully adaptive manner in the regions where the density
exceeds a predeÐned threshold. The mesh is generated to e†ectively match an arbitrary geometry of the
underlying density ÐeldÈa property particularly important for cosmological simulations. In a simulation
the mesh structure is not created at every time step but is properly adjusted to the evolving particle
distribution. The algorithm is fast and e†ectively parallel : the gravitational relaxation solver is approx-
imately half as fast as the fast Fourier transform solver on the same number of mesh cells. The required
CPU time scales with the number of cells, as The code allows us to improve considerablyN
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c
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the spatial resolution of the particle-mesh code without loss in mass resolution. We present a detailed
description of the methodology, implementation, and tests of the code.

We further use the code to study the structure of dark matter halos in high-resolution (D2 h~1 kpc)
simulations of standard CDM ()\ 1, h \ 0.5, and "CDM h \ 0.7,p8\ 0.63) ()" \ 1 [ )0\ 0.7, p8\
1.0) models. We Ðnd that halo density proÐles in both CDM and "CDM models are well Ðtted by the
analytical model presented recently by Navarro et al., which predicts a singular [o(r)P r~1] behavior of
the halo density proÐles at small radii. We therefore conclude that halos formed in the "CDM model
have structure similar to that of CDM halos and thus cannot explain the dynamics of the central parts
of dwarf spiral galaxies, as inferred from the galaxiesÏ rotation curves.
Subject headings : methods : numerical È cosmology : theory È dark matter

1. INTRODUCTION

N-body techniques are used in cosmological simulations
to follow the nonlinear evolution of a system of particles
and to give theoretical predictions about the matter dis-
tribution that can be compared with observations. The tra-
ditional N-body methods are the particle-mesh (PM),
particle-particle/particle-mesh (P3M), and TREE methods

& Eastwood & Shandarin(Hockney 1981 ; Klypin 1983 ;
et al. & Hernquist and ref-Efstathiou 1985 ; Bouchet 1988,

erences therein). Although numerous fundamental results
have been obtained using these codes, the codes often
cannot provide the desired spatial or mass resolution with
currently available computers because of either memory or
CPU limitations. Thus, for example, the PM code can
handle a large number of particles (the latest PM simula-
tions follow the evolution of approximately 6 ] 107
particles) but is limited in spatial resolution (to increase
resolution by a factor of 2 requires 8 times as much
memory ; the largest PM simulations have reached a
dynamic range of D1500). TREE and P3M codes are CPU-

because calculation of forces in these codes is con-limited1
siderably slower than in the PM code and, in the case of the
P3M code, is also strongly dependent on the degree of parti-
cle clustering. In an ideal cosmological simulation one
needs a resolution D1È10 kpc to resolve a galaxy and a

1 Although in the case of relatively small number of particles, N
p
¹

2563, the TREE and P3M codes can provide higher dynamic range than
the PM code.

simulation cube of D100 Mpc to sample the longest pertur-
bation waves appropriately or to get sufficient statistics.
The number of particles should be sufficiently large (usually
a few million or larger) to allow halo properties to be reli-
ably determined. The required dynamical range is thus
D104È105, which is higher than the above codes can
provide for the required number of particles with currently
available computers. These limitations have motivated the
development of new methods with better resolution and/or
performance.

developed a code in which the PM gridVillumsen (1989)
was complemented by Ðner cubic subgrids to increase the
force resolution in regions of interest. The local potential
was calculated as a sum of the potentials on the subgrids
and on the PM grid. A similar approach was adopted by

Duncan, & Chau in their particleÈmultiple-Jessop, (1994)
mesh code. However, instead of summing the potentials
from subgrids, the potential on each level was obtained
independently by solving the boundary problem. Boundary
values of the potential were interpolated from the coarser
parent grid. used cubic reÐnement gridsCouchman (1991)
to improve the performance of the P3M algorithm. Here,
the resolution of the P3M code was retained while the com-
putational speed was considerably increased. In the
Lagrangian approach the compu-(Gnedin 1995 ; Pen 1995)
tational mesh is not static but moves with the matter so that
the resolution increases (smaller mesh cells) in the high-
density regions and decreases elsewhere. Although poten-
tially powerful, this approach has its caveats and drawbacks

& Bertschinger The mesh distortions, for(Gnedin 1996).
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example, may introduce severe force anisotropies. A di†er-
ent approach was adopted by who developed theXu (1995),
TPM code, a hybrid of the PM and TREE algorithms. The
gravitational forces in the TPM are calculated via a PM
scheme on the grid and via multipole expansions (TREE
algorithm) in the regions where higher force resolution is
desired. The forces on the particles in low-density regions
are calculated by the PM scheme, while forces on the par-
ticles in high-density regions are the sum of the external
large-scale PM force and the internal small-scale force from
the neighboring particles. Although this code may not be
faster than a pure TREE code, it is e†ectively parallel
because particles in di†erent regions can be evolved inde-
pendently. An adaptive multigrid code for cosmological
simulations was recently presented by & SaarSuisalu

In this code, Ðner rectangular subgrids are adap-(1995).
tively introduced in regions where the density exceeds a
speciÐed threshold. For each subgrid, the potential is calcu-
lated using boundary conditions interpolated from the
coarser grid. The solution on the Ðner grid is used to
improve the solution on the coarser grid. Another variant of
an adaptive particleÈmultiple-mesh code for cosmological
simulations was recently presented by Cherno†, &Gelato,
Wasserman This code can handle isolated boundary(1997).
conditions, which makes it applicable to noncosmological
problems.

All of the above multigrid methods use rectangular sub-
grids to increase force resolution. For simulations where
there are only a few small regions of interest (e.g., a few
galaxies or clusters of galaxies) the rectangular reÐnements
may be a good choice because these regions can be easily
covered by rectangular subgrids. It is, however, well known
that the geometry of structures in realistic cosmological
models is usually a complicated network of sheets, Ðla-
ments, and clumps that are difficult to cover efficiently with
rectangular grids.

In this paper we present a new adaptive reÐnement tree
(ART) high-resolution N-body code. This code was devel-
oped to improve the spatial resolution of a particle-mesh
code by about two orders of magnitude without loss of
mass resolution or computational speed. In our scheme, the
computational volume is covered by a cubic grid that
deÐnes the minimum resolution. On this grid, the Poisson
equation is solved with a traditional fast Fourier transform
(FFT) technique using periodic boundary conditions. The
Ðner are built up as collections of cubic, non-meshes2
overlapping cells of various sizes organized in octal threaded
trees in regions where the density exceeds a predeÐned
threshold. Any mesh can be subject to further reÐnements ;
the local reÐnement process stops when the density cri-
terion is satisÐed. Once constructed, the mesh, rather than
being destroyed at each time step, is promptly adjusted to
the evolving particle distribution. To solve the Poisson
equation on these reÐnement meshes, we use a relaxation
method with boundary conditions and an initial solution
guess interpolated from the previous coarser mesh. Below
we present the method describe the code and(° 2), (° 3),
discuss the tests We then compare the code with other(° 4).
algorithms and Ðnally apply it to a real cosmological(° 4)
problem (° 5).

2 We will use the word grid to refer to cubic or rectangular conÐgu-
rations, reserving the word mesh for conÐgurations of arbitrary shape.

2. METHODOLOGY

2.1. Adaptive Mesh ReÐnement
Adaptive mesh reÐnement (AMR) techniques for solving

partial di†erential equations (PDEs) have numerous appli-
cations in di†erent Ðelds of physics, astrophysics, and engin-
eering in which large dynamic range is important. There are
two major approaches in the application of these tech-
niques. In the Ðrst approach (e.g., & OligerBerger 1984 ;

& Colella the computationalBerger 1986 ; Berger 1989),
volume is divided into cubic elements (cells), while in the
second (e.g., & Baum the cells can have anLo� hner 1991)
arbitrary shape. Collections of cells are used as computa-
tional meshes on which the PDEs are discretized. We will
call meshes composed of cubic cells regular, calling meshes
irregular otherwise. The integration of PDEs is simpler on
regular meshes, but dealing with complicated boundaries
may be a difficult problem. With irregular meshes one can
handle complicated boundaries much more easily. The
price, however, is more elaborate algorithms, data struc-
tures, and associated CPU and memory overhead. A partic-
ular choice of the mesh structure is a tradeo† between these
considerations. In astrophysics there are no complicated
boundaries, and a cubic computational volume is usually
used to model a system. In this case, there is no need for
irregular meshes and it is preferable to use meshes made of
cubic cells.

The regular meshes themselves can be organized in di†er-
ent ways. The usual practice is to use regular meshes of
cubic or rectangular shape (e.g., & ColellaBerger 1989)
organized in arrays (grids), which allows one to simplify
data structures and to use standard PDE solvers. These
arrays can be organized in a tree to form a(Berger 1986)
multigrid hierarchy. The main disadvantage of the grids is
that one cannot cover regions of complicated shape in an
efficient way. Moreover, the arrays are an inÑexible data
structure, and the whole reÐnement hierarchy should be
periodically rebuilt, not adjusted, when dealing with
unsteady solutions.

In our approach, we use regular meshes, but they are
handled in a completely di†erent way. Cells are treated as
individual units organized in reÐnement trees (see ° 3.2).
Each tree has a rootÈa cell belonging to a base cubic grid
that covers the entire computational volume. If the root is
reÐned (split), it has eight children (smaller nonoverlapping
cubic cells residing in its volume), which can be reÐned in
their turn, and so on. Cells of a given reÐnement level are
organized in linked lists and form a reÐnement mesh. The
tree data structures make mesh storage and access in
memory logical and simple, while linked lists allow for effi-
cient mesh structure traversals. In the current version of the
code we make use of octal threaded trees (Khokhlov 1997)
and doubly linked lists (e.g., Hopcroft, &Knuth 1968 ; Aho,
Ulman Leiserson, & Rivest The fact1983 ; Corner, 1994).
that cells are treated as independent units rather than ele-
ments of a grid allows us to build a very Ñexible mesh
hierarchy that can be easily modiÐed. The details of mesh
generation and modiÐcation in our code are described in
° 3.

2.2. Multilevel Relaxation Method
The multigrid techniques of solving partial di†erential

equations are very successful in reducing the(Brandt 1977)
computational and storage requirements for solving many
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types of PDEs et al. There are(Wesseling 1992 ; Press 1992).
two kinds of multigrid algorithms. The Ðrst, sometimes
called the multigrid method, is used to speed up convergence
of relaxation methods. In this method, the source term is
deÐned only on the base Ðnest gridÈall the other, coarser
grids are used as a workspace. In the second algorithm,
called full multigrid, the source term is deÐned on all grids,
and the method obtains successive solutions on Ðner and
Ðner grids. The latter method is useful when dealing with
grids created in adaptive reÐnement processes. The full
multigrid scheme can be used di†erently in its turn, depend-
ing on how the solutions on di†erent levels inÑuence each
other. In the one-way interface scheme, the solution from a
coarser grid is used to get a Ðrst-guess solution on the Ðner
grid and often to get boundary values as well. However, the
solution on the coarser grid is not inÑuenced by the solution
on the Ðner grid (e.g., et al. In the two-wayJessop 1994).
interface scheme, the coarser grid solution is used to correct
the solution on the Ðner grids and vice versa. The choice of
a particular scheme is usually determined empirically and is
problem dependent. The two-way interface scheme is more
difficult to implement in the case of periodic boundary con-
ditions & Saar(Suisalu 1997).

In our approach, each reÐnement mesh is composed of
cells of the same reÐnement level, but these meshes are com-
pletely di†erent from grids. The techniques are thus multi-
level rather than multigrid. We use an analog of the full
multigrid algorithm with a one-way interface between the
meshes. We use a regular cubic grid covering the whole
computational volume as the zeroth or coarsest level. At
this level, the Poisson equation is solved using a standard
FFT method with periodic boundary conditions. This solu-
tion is then interpolated onto the Ðner Ðrst-level mesh to get
the boundary values and Ðrst-guess solution. Once the
boundary problem is deÐned, we use a relaxation method
(e.g., et al. to solve the Poisson equation on thePress 1992)
mesh. Since we start from an initial guess that is already
close to the Ðnal solution, the iterative relaxation procedure
converges quickly. After we get the solution on the Ðrst
reÐnement level, the same procedure (obtaining boundary
values and an initial guess by interpolation from the pre-
vious coarser level) is repeated for the next level, and so
forth. At the end of this process we have the solution
(potential) for all cells. The description of the code is given
in the next section.

3. DESCRIPTION OF THE CODE

3.1. Code Structure
The structure of the code can be outlined as follows. First

of all, we set up the initial positions and velocities of the
particles using the Zeldovich approximation, as described
by & Shandarin Once the initial conditionsKlypin (1983).
are set, we construct the regular cubic grid covering the
whole computational volume and then proceed to check
whether additional reÐnement levels are required by the
current density threshold. At this point the code enters the
main computational loop, which includes

1. Density assignment on all existing meshes ;
2. A gravitational solver ;
3. Routine updating of particle positions and velocities ;
4. ModiÐcations to the mesh hierarchy.

The mesh modiÐcations (reÐnement and dereÐnement) are

based on the density The modiÐcations aredistribution.3
made at the end of the computational cycle. At this point
the density distribution is available, since it was calculated
for the gravitational solver.

Below we will describe each of these major functional
blocks in detail. We will also discuss timing, energy conser-
vation, and the memory requirements of the code.

3.2. Mesh Generator
The adaptive mesh reÐnement block of the code gener-

ates new meshes and modiÐes existing ones. The reÐnement
hierarchy in our implementation is based on the regular
cubic grid that covers the entire computational volume.
With the reÐnement block turned o†, the density assign-
ment and gravity solver on this grid are similar to those in
the PM code of Kotok, & KlypinKates, (1991).

The data structures that we use to organize the mesh cells
are very similar to those implemented in the hydrodynami-
cal Eulerian tree reÐnement Allcode4 (Khokhlov 1997).
mesh cells are organized in reÐnement trees. A cell can be a
parent of eight childrenÈsmaller cubic cells of equal volume
residing in it. Each child may be in its turn split and have
children. Each tree has a root (a zeroth-level cell) that may
be the only cell in this tree if it is unsplit. The tree ends with
unsplit cells, which we call leaves. This structure is called an
octal rooted tree, and is the construct used in TREE codes.
There is, however, an important di†erence between our
code and TREE codes. We use fully threaded trees, in which
cells are connected with each other on all levels. In addition,
cells that belong to di†erent trees are connected to each
other across tree boundaries. In fact, we can consider all
cells as belonging to a single threaded tree with a root being
the entire computational domain and the base grid being
one of the tree levels. The tree structure is supported
through a set of pointers. Each cell has a pointer to its
parent and a pointer to its Ðrst child. In addition, cells have
pointers to the six adjacent cells (these make the tree fully
threaded) so that information about a cellÏs neighbors is
easily accessible (see Overall, the following informa-Fig. 1).
tion is provided for each cell i belonging to a tree :

1. Level (i), the level of the cell in the tree ;
2. Parent (i), the pointer to the parent cell ;
3. Child (i), the pointer to the cellÏs Ðrst child, or nil if the

cell is a leaf ;
4. Nb (i, j), pointers to neighboring cells ( j \ 1, . . . , 6) ;
5. Pos (i, j), position in space ( j \ 1, . . . , 3) ;
6. Var (i, n), storage for associated physical variables (in

our case n \ 2, as we store both the density and the
potential).

The above set of pointers is sufficient to support the tree
structure and to change it dynamically with minimum cost.
In addition, the cells on each level of the mesh hierarchy are
organized in doubly linked (e.g., so that alists5 Knuth 1968)

3 The density criterion is a natural choice in our case because we aim to
resolve high-density regions. We could use, however, any other appropri-
ate criterion, e.g., local potential gradient, force accuracy, etc.

4 There are, however, some important modiÐcations required by spe-
ciÐcs of the cosmological simulations.

5 The di†erence between a doubly linked list and the usual linked list
(used, for example, in the P3M codes) is that in the former we keep not only
a pointer to the next element but also a pointer to the previous element in
the list. This allows us to insert and delete list entries without rebuilding
the whole list.
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FIG. 1.ÈSchematic illustration of the tree structure and the pointers
used to support it in one dimension. (a) : Two neighbor cells (““ Parent ÏÏ and
““Neighbor ÏÏ), one of which (““ Parent ÏÏ) is split (it has two children marked
““ Child 1 ÏÏ and ““ Child 2 ÏÏ) and the other of which (““ Neighbor ÏÏ) is a leaf.
The arrows denote pointers used to support the structure (see text for
details). Arrows drawn with dashed lines denote pointers that can be
shared by all children. Below (b) we show the actual locations of the mesh
cells in space.

sweep through a given level (the operation used extensively
in the multigrid relaxations described below) can be done
with minimum CPU time. This organization adds two poin-
ters for each eight siblings, or storage elements per cell.14The cells belonging to the base regular grid (level zero),
while part of the same data structure as the other cells, are
created only at the very beginning of a simulation and are
never destroyed. It is therefore unnecessary to keep infor-
mation about a cellÏs position or pointers to its neighbors
because they can be easily computed. The number of poin-
ters can be considerably reduced (by as much as a factor of
2) because some of them can be shared by siblings (sets of
eight cells with the same parent).

An elementary reÐnement process creates eight new cubic
cells of equal volume (children) inside a parent cell. When
the parent is reÐned, we check if all six neighbors are of the
same level as the parent. If there are coarser neighbors (of
lower level than the parent), we split those neighbors. If a
neighbor in its turn has coarser neighbors, we split the
neighborÏs neighbors, and so forth. We thus build a reÐne-
ment structure which obeys a rule allowing no neighbor cells
with level di†erence greater than 1. Examples of allowed and
prohibited conÐgurations are shown in AlthoughFigure 2.
this is the only rule in the whole reÐnement process, it deter-
mines the global structure of the resulting reÐnement hier-
archy, assuring that there are no sharp resolution gradients
on a levelÏs boundaries. On the next reÐnement pass, each of
the newborn children is checked against the density cri-
terion and can be subdivided into 8 children in its turn if
further splitting is needed. The process stops when either
the density criterion is satisÐed everywhere or the maximum
allowed reÐnement level is reached.

The reÐnement process proceeds level by level starting
from the base grid. On any level of the mesh hierarchy the

FIG. 2.ÈExamples of permitted and prohibited neighbor conÐgu-
rations. The prohibited conÐgurations (the cells that violate the neighbor
rule) are indicated with arrows. Note that a mesh is not allowed to have
neighbors with level di†erence greater than 1 but is allowed to have
““ corner neighbors ÏÏ with level di†erence 2.

process can be split into two major parts. First, we mark
all the cells that need to be split, creating a reÐnementup6

map. However, a map constructed in this way tends to be
““ noisy.ÏÏ We smooth it by marking additional cells so that
any cell that was originally marked is surrounded by a
bu†er of at least two other marked cells. We construct this
bu†er using an algorithm that includes several passes
through a level, each one marking additional cells. During
the Ðrst pass the neighbors of cells marked in the reÐnement
map are marked for splitting also. After that, two passes are
made in which we mark for splitting only those cells which
have at least two neighbors already marked for reÐnement
(note that when we speak of marked cells, we mean cells
marked only during passes before the one we are discussing,
not during the pass under consideration). These three passes
create a one-cell cubic bu†er around each of the cells
marked in the original reÐnement map. Each additional set
of three passes similar to those described above will build
one more cubic layer around every originally marked cell.
Therefore, to build a two-cell bu†er we make six passes.
When the map is completed, it is used to make the actual
splitting.

The reÐnement procedure described above can be used
either to construct the mesh hierarchy from scratch or to
modify the existing meshes. However, in the course of a
simulation the structure is neither constructed nor
destroyed. Instead, in every computational cycle we modify

6 In this step, a cell is marked for splitting if the local density exceeds a
predeÐned level-dependent threshold.
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existing meshes to account for the changes in particle dis-
tribution. Therefore, we need to make not only reÐnements
but also dereÐnements (in the places where it is no longer
necessary to keep resolution at the current level), which is
accomplished in the same manner as reÐnement by con-
structing a dereÐnement mapÈthat is, a map of cells
marked for joining. If the joining violates the above-
mentioned neighbor rule, nothing is done and the cell
remains split. Therefore, the code modiÐes the existing
structure dynamically, keeping the reÐnements in accord
with the ever-changing density Ðeld. Modifying the hier-
archy requires much less CPU time than rebuilding it
because only a small number of cells needs to be modiÐed at
any given time step. shows an example of theFigure 3
reÐnement mesh hierarchy built in one of the "CDM
cosmological simulations described in A selected° 4.4.
region of is shown expanded inFigure 3 Figure 4.

FIG. 3.È(a) A slice through the reÐnement structure (base grid is not
shown) in one of the "CDM simulations with 323 particles (see and° 4.4)
(b) the corresponding slice through the particle distribution. The area
enclosed by the square in (a) is enlarged in Fig. 4.

3.3. Particles within the Mesh Hierarchy and
Density Assignment

Particle coordinates are not sufficient to specify the
particle-mesh connection because cells of di†erent levels can
share the same volumes ; we need to know, however, which
particles belong to a given cell. We keep track of the par-
ticles by arranging them in doubly linked lists so that every
cell ““ knows ÏÏ its head linked-list particle (the head is nil if
the cell is empty) and thus all the other particles in this
linked list. If a particle moves from cell to cell, it is deleted
from the linked list of the cell it leaves and is added to the
new cellÏs linked list. Only leaves are allowed to own par-
ticles. Once a cell is split, all its particles are divided among
its children. However, we solve the Poisson equation on
every reÐnement level, so that the value of the density must
be computed for every cell regardless of whether or not it is
a leaf. On each level, starting from the Ðnest level and up to
the zeroth level, the density is assigned using the standard
cloud-in-cell (CIC) technique & Eastwood(Hockney 1981).
Because particles belong only to the Ðnest cells enclosing
them, when we change between levels the particles are
passed from children to their parents. The particles are
transferred in this way only so far as the density assignment
is concerned ; the linked list is not changed. The particles,
therefore, contribute to the density on any level in which
they are physically located.

3.4. Poisson Solver
The fact that the zeroth level of the mesh hierarchy is a

cubic regular grid of Ðxed resolution allows us to use the
FFT method to solve the Poisson equation on this grid

& Eastwood The FFT technique naturally(Hockney 1981).
supports periodic boundary conditions, which is important
for cosmological simulations. Moreover, the FFT is well
benchmarked and is about twice as fast as the relaxation
method described below.

The Poisson equation on the reÐnement meshes is
deÐned as a Dirichlet boundary problem for which bound-
ary values are obtained by interpolating the potential from
the parent grid. In our algorithm, the boundaries of the
reÐnement meshes can have an arbitrary shape, which
narrows the range of PDE solvers one can use. To solve the
Poisson equation on these meshes, we have chosen the
relaxation method & Eastwood et al.(Hockney 1981 ; Press

which is relatively fast and efficient in dealing with1992),
complicated boundaries. In this method the Poisson equa-
tion

+2/\ o (1)

is rewritten in the form of a di†usion equation,

L/
Lq

\ +2/[ o . (2)

The point of the method is that an initial solution guess /
relaxes to an equilibrium solution (i.e., solution of the
Poisson equation) as q] O. The Ðnite-di†erence form of

isequation (2)

/
i,j,kn`1\ /

i,j,kn ] *q
*2
A

;
nb/1

6
/nbn [ 6/

i,j,kn
B

[ o
i,j,k*q . (3)

where the summation is performed over a cellÏs neighbors.
Here, * is the actual spatial resolution of the solution
(potential), while *q is a Ðctitious time step (not related to
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FIG. 4.ÈRegion enclosed by the square in Note that the mesh generator tends to build almost rectangular meshes around dense isolated clumpsFig. 3a.
of particles, while to trace a Ðlament the generator creates meshes of arbitrary shape that e†ectively cover the elongated structures in particle distribution.

the actual time integration of the N-body system). This
Ðnite di†erence method is stable when *q¹ *2/6 et(Press
al. If we choose the maximum allowed time step1992).
*q\ *2/6, the above equation can be rewritten in the form
of the following iteration formula :

/
i,j,kn`1\ 1

6
A

;
nb/1

6
/nbn [ 6/

i,j,kn
B

[ *2
6

o
i,j,k . (4)

The relaxation iteration thus averages the potential of a
cellÏs six neighbors and subtracts the contribution from the
source term. Cells in the boundary layer will have some
neighbors belonging to the coarser level. In this case, we
need to interpolate to get the potential at the location of the
expected neighbor. It is desirable that the interpolation
maintain continuity and isotropy of the force (see the dis-
cussion in et al. We have found that linearJessop 1994).
interpolation perpendicular to the boundary that incorpor-
ates both coarser and Ðner cell potentials is satisfactory ; we
get the interpolated value of the potential on the boundary
of level l as

/int \ w
i
/

l
] (1 [ w

i
)/

l~1 . (5)

Here is a weight and and are the potentials of aw
i

/
l

/
l~1boundary cell of level l and of its (l [ 1)-level neighbor,

respectively. We found the optimal value of to be 0.2 byw
iminimizing the force discontinuity for particles moving

through mesh boundaries. The iterative procedure
described above is repeated until the desired level of con-
vergence is achieved. We can speed up the convergence of
the relaxation procedure considerably by using an initial
guess for the solution that is already close to the Ðnal solu-
tion. Such an initial guess can be obtained by interpolating
the potential from the previous coarser mesh, for which the
Poisson equation was already solved. By doing so, we need
only 2È3 iterations to Ðnd the potential to an accuracy of a
one or two percent. Nevertheless, a higher accuracy is
needed because the potential is then di†erentiated to get the
accelerations ; the errors in accelerations are thus larger
than the errors in the potential. Therefore, we would need to
make more iterations to reach the same D1È2% accuracy
level in the acceleration. The number of required iterations,
however, can be considerably reduced by using the so-called
successive overrelaxation (SOR) technique &(Hockney
Eastwood et al. In this technique, the1981 ; Press 1992).
solution in a given cell is computed as a weighted average,

/
*
n`1\ u/n`1] (1 [ u)/n , (6)

where /n`1 is the solution obtained via the iteration
/n is the solution from previous iteration step,equation (4),

and u is the overrelaxation parameter. The parameter u can
be adjusted to minimize the number of iterations required
to achieve a certain accuracy level.
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The ultimate goal of any N-body algorithm is to get an
accurate approximation to the pairwise interparticle forces.
Therefore, we use the force accuracy (see to determine° 4)
the required number of iterations. Of course, there is no
point in using more iterations than the number needed to
make the iteration error smaller than truncation error. The
latter can be estimated by making the number of iterations
very large, so that the iteration error is negligible. We then
Ðnd the minimum number of iterations for which the force
accuracy is still at the level of the truncation errors. The
number of iterations is further minimized by adjusting the
overrelaxation parameter. We have found empirically that
only 10 relaxation iterations are needed if u\ 1.25.

3.5. Particle Dynamics
To integrate the trajectories of the dark matter particles

we use the Newtonian equations of motion in an expanding
cosmological framework (e.g., These equa-Peebles 1980).
tions can be expressed in terms of comoving coordinates x
related to the proper coordinates as r \ a(t)x, where
a(t) \ (1 ] z)~1 is the expansion factor :

dp
dt

\ [+
x
/ ,

dx
dt

\ p
a2 , (7)

where p is the momentum of a particle and is given by+
x
/

the Poisson equation relating the potential / to deviations
of density from the background :

+
x
2 /\ 4nGa2(o [ o) . (8)

The above equations are integrated numerically using
dimensionless variables

x \ x0 x8 , t \ t8 /H0 , /\ /8 (x0H0)2 ,

p \ p8 (x0H0) , o \ o8
3H02
8nG

)
M

a3 , (9)

where is the length of a zeroth-level mesh cell and isx0 H0the Hubble constant. We also use the expansion factor a
instead of the time t, so that equations and can be(7) (8)
rewritten as

dp8
da

\ [f ()
M

, )", a)$3 /8 ,

dx8
da

\ f ()
M

, )", a)
p8
a2 ,

+3 2/8 \ 3)
M

2a
(o8 [ 1) . (10)

Here is the present-day (z\ 0) contribution of matter to)
Mthe total density of the universe and is the corresponding)"contribution of the vacuum energy (measured by the

cosmological constant). The function f is speciÐc to a given
cosmological model. The general form of this function, valid
for open, Ñat, and closed cosmologies, is (e.g., Press,Carrol,
& Turner 1992)

f ()
M

, )", a)\ 1

J1 ] )
M

(1/a [ 1) ] )"(a2 [ 1)
. (11)

We adopt a standard second-order leapfrog integration
scheme of advancing particles to the next time step. For a
step n corresponding to a time step thea

n
\ ainit] n *a,

momenta and positions of particles are updated as follows :

p8
n`1@2 \ p8

n~1@2 [ f ()
M

, )", a
n
)+3 /8

n
*a ,

(12)

x8
n`1\ x8

n
] f ()

M
, )", a

n`1@2)
¿8
n`1@2

a
n`1@22 *a .

Here the indices n, n ] 1, and refer to quantitiesn ^ 12evaluated at and respectively. Althougha
n
, a

n`1, a
n
^ *a/2

multiple time stepping is probably very efficient in terms of
CPU time, in the current version of the code we use a
constant time step for all particles. We plan to implement
individual time steps for di†erent levels in the future. Parti-
cle coordinates and velocities are updated using the acceler-
ations obtained via numerical di†erentiation of the
potential and interpolation to the particle location using the
CIC method & Eastwood There are,(Hockney 1981).
however, some complications because particles can move
through the level boundaries. The resolution gradients, for
example, may induce unwanted force Ñuctuations and
anisotropies et al. Norman, &(Jessop 1994 ; Anninos,
Clarke In addition, momentum conservation,1994).
achieved by exact cancellation of numerical terms in the
CIC method, is no longer guaranteed. This means that
additional care must be taken to minimize these e†ects.
Usually, this is done by introducing extra bu†er regions
along the mesh interfaces so that force interpolation on the
boundaries is avoided. In our code, we do not introduce
additional bu†er cells on the mesh boundaries because the
meshes are already expanded by smoothing (see ° 3.2).
Therefore, we simply prohibit force interpolation that uses
both coarse and Ðne boundary cells, interpolating instead
on the coarse level. In this way, particles are driven by the
coarse force until they move sufficiently far into the Ðner
mesh. The same is true for particles moving from the Ðner to
coarser mesh.

3.6. Memory Requirements
The memory requirements of the code are determined by

the number of dark matter particles the number of cellsN
p
,

in the zeroth-level base grid and the number of cells inN
c
0,

the reÐnement levels In the current implementation ofN
c
L.

the code the total number of memory storage elements N
used by the code is

NARTB 8N
p
] 6N

c
0] 15N

c
L . (13)

The particle information consists of coordinates, momenta,
and two pointers used to organize the doubly linked list.
The overhead for is determined by the pointers used toN

c
L

support the tree reÐnement hierarchy (see It can be° 3.2).
signiÐcantly reduced (this scheme was implemented in

if most of the cell information (namelyKhokhlov 1997)
Level, Parent, Nb, and Pos ; see is shared between° 3.2)
siblings (the eight cells which have the same parent). The
cells have individual pointers to their Ðrst child and to two
physical variables (density and potential). In this case, for
eight reÐnement cells we need only 1 Level] 1 Parent ] 6
Nb ] 3 Pos ] 8 Child] 16 Var \ 35 storage elements
(B4.5 per cell instead of 15). We plan to implement these
improvements in the future versions of the code.

NART can be compared to the corresponding number of
storage elements in a PM code,

NPMB 6N
p
] N

c
0 . (14)



80 KRAVTSOV, KLYPIN, & KHOKHLOV Vol. 111

The apparent overhead of the ART code compared to the
PM code is the price for a fully adaptive and Ñexible mesh
structure. It should be noted, however, that to increase
resolution by a factor of 2 in a PM code the number of cells

must be increased by a factor of 8, which severely limitsN
c
0

the maximum possible dynamic range (D1500, with the
largest currently available computers). In the ART code, the
resolution is improved by increasing which changesN

c
L ,

very slowly when resolution is increased. For example, to
increase resolution in the highest density regions by a factor
of 2 in the simulations described in (see also the° 5 Table 1),
total number of cells was increased only by D3%. Note also
that the dynamic range of D4000 was achieved with only
D5 ] 106 cells, while a PM code would require
D6.4] 1010 cells to reach the same resolution. For com-
parison, the memory requirements of the publicly available
version of the TREE code (kindly provided by J. Barnes) are

where is the number of treeNTREE B 11N
p
] 18Ncells, Ncellscells. The memory requirements of the AP3M code

are(Couchman 1991) NAP3MB 10N
p
.

3.7. T iming
In this section we present timings of the current version of

the code and compare the performance with other high-
resolution N-body codes. The present version of the code
was parallelized to run in shared memory mode on the
HP-Convex SPP-1200 Exemplar, a multipurpose scalable
parallel computer. Currently, the code is not fully parallel-
ized. The blocks of code that require considerable paralleli-
zation e†orts, namely the density assignment and cell
splitting/joining during the mesh modiÐcations, are run
serially. The parallelization of the most CPU-expensive
parts of the code, the Poisson solver and the force inter-
polation, was straightforward. We are now working on the
complete parallelization (including distributed memory
architectures) and optimization of the code and will present
details elsewhere.

In we show the performance of di†erent blocksFigure 5a
of the code with respect to the expansion parameter in a
"CDM simulation h \ 0.7,()" \ 1 [ )0\ 0.7, p8\ 1.0)
of an L \ 15 h~1 Mpc box with N \ 323 particles and a
base grid of 643 cells (more details are given in The° 4.4).
simulation was run on 8 CPUs of the NCSA SP-1200
Exemplar in shared memory mode. The CPU overhead for
running code in parallel is about 50%, and the same simula-
tion run on an IBM RS/6000 workstation performs D2.5
times faster (in terms of CPU but not in terms of wall-clock
time!). The overhead is mostly due to the unusually large
penalty for cache-missing events that results if memory is
accessed randomly. In we present timing for di†er-Table 1
ent code blocks for the Ðnal time step (z\ 0) of two similar
"CDM simulations with 643 particles (see with di†er-° 5.2)
ent resolutions. The base grid in both simulations was 1283
cells and the numbers of maximum allowed reÐnement
levels were 4 and 6 (the number of mesh cells in Table 1

includes zeroth-level cells). As before, the simulations were
run on 8 CPUs of the SPP-1200 Exemplar. We compare the
timings from with the performance of the AP3MTable 1
code The Ðnal step in a two-level AP3M(Couchman 1991).
simulation of an open cosmology ()0\ 0.5, )" \ 0,
h \ 0.63, box L \ 150 h~1 Mpc, 1283 grid cells,p8\ 1.2 ;
1283 particles, and smoothing kernel g \ 0.1 cell, giving a
dynamic range of about 1000) took 1316 CPU seconds on
one processor of an IBM SP-2 computer (S. Borgani 1996,
private communication). This number is roughly consistent
with the timings presented in the original paper of

if we account for the di†erence in MÑopsCouchman (1991)
between the machines used. The Ðrst simulation in Table 1
is comparable in spatial resolution to the above AP3M
simulation, but we must account for the di†erent number of
particles. Only density assignment and particle motion scale
directly with the number of particles. We therefore multiply
the CPU time spent by these routines by 8, which gives a
total time for the Ðnal step of D650 CPU seconds. Note,
however, that about half of this CPU time is penalty for the
cache missings, which would be negligible for a serial run on
the SP-2. The ART code, therefore, is about 3 times faster
than the AP3M code at comparable resolution. Note also
that although in the second simulation from theTable 1
resolution was increased by a factor of 4, the CPU time did
not change signiÐcantly because only a relatively small
number of additional cells was required to resolve the
highest density regions.

3.8. Energy Conservation
In an expanding universe, energy conservation is

expressed by the Irvine-Layzer-Dmitriev-Zeldovich equa-
tion,

d
dt

[a(T ] U)]\ [T
da
dt

, (15)

or

a(T ] U) o
a0
a \ [

P
a0

a
T da , (16)

where

T \ 1
2

;
i/1

Np p
i
2

a2 , U \ 1
2

;
i/1

Np
/

i
. (17)

The error in energy conservation at a time is then mea-a
isured by comparing the change in total energy with the

change in aU :

error \ a(T ]U) o
a0
ai~1 ] /

ai~2
ai~1 T da

aU o
a0
ai~1

(18)

In we show the energy conservation error versusFigure 5b
the expansion parameter a for two "CDM simulations with
323 and 643 particles. In both simulations the time step, *a,

TABLE 1

CODE TIMINGS FOR "CDM SIMULATIONS WITH 643 PARTICLES ON 8 CPUS OF THE SPP-1200 EXEMPLAR

TASK CPU TIME (s)
MAXIMUM NUMBER OF

RUN LEVEL MESH CELLS Density Assignment FFT Solver Relaxation Solver Particle Motion Mesh ModiÐcations TOTAL

1 . . . . . . 4 4860976 25.8 26.2 54.5 34.8 44.0 185.3
2 . . . . . . 6 5019136 30.6 26.4 82.7 40.8 55.7 236.2
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FIG. 5.È(a) Timing for "CDM run with 323 particles on 8 processors of SPP-1200 Exemplar (see for discussion). The total CPU time per step is° 3.8
scaled down by a factor of 2 for convenience. (b) Energy conservation error vs. expansion factor a in "CDM runs with 323 (solid line) and 643 (dashed line)
particles.

was chosen so that none of the particles would move more
than a fraction (D0.1È0.3) of the mesh cell they were
residing in over one step. We note that energy is conserved
at the level of D2% in the 323 particle simulation and at the
level of D1% in the 643 particle simulation. The maximum
errors of D5% and D3% for the two simulations occurred
when the Ðrst two reÐnement levels were opened at
a D 0.18. This may be a result of the rather fast change in
resolution in regions of ongoing nonlinear collapse.

3.9. Density T hreshold
One of the important parameters of the code is the

density threshold, which is used to decide whether a given
patch of the computational volume should be reÐned or
dereÐned. The usual practice in the adaptive reÐnement
algorithms is to consider this threshold a free parameter
(see, e.g., & Saar While we also take it as aSuisalu 1995).
free parameter, we will discuss here some practical limits.
First of all, we do not want to set the density threshold too
low because it usually leads to shot noise in the reÐnement
procedure and can also lead to unwanted two-body e†ects
(we should not force a resolution considerably less than
mean separation between particles). Our tests (particularly
the spherical infall test presented in have shown that° 4)
two-body e†ects are negligible and that the reÐnement/
dereÐnement procedure is stable if we use a density thresh-

old corresponding to º5È6 particles in a mesh cell. We
chose the minimum value of 5 for the simulations described
in We can also consider this parameter from a di†erent° 5.
point of view. The threshold can be thought of as a param-
eter deÐning the overdensity at which the reÐnement takes
place. In the case of simulations presented in the thresh-° 5
old value corresponds to an overdensity of 40 on the Ðrst
reÐnement level. This overdensity is reasonable for the
purpose of resolving a haloÈthe Ðrst reÐnement happens
well beyond the halo virial radius (corresponding to the
overdensity 200). We have also found that the results are
not particularly sensitive to the threshold in the range of
5È10 particles per cell.

4. TESTS OF THE CODE

In this section we present tests of the developed code. In
particular, we show results describing the accuracy of the
force calculation in ART scheme and related issues of
resolution. We discuss the results of the Zeldovich pancake
test and of the spherical infall test. Finally, we compare
results for a set of realistic cosmological runs obtained with
the ART and PM codes.

4.1. Force Accuracy
It is important to know the shape and accuracy of both

short- and long-range forces in order to compare the
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FIG. 6.È(a) Pairwise force accuracy of the ART code on the base regular grid (FFT solver) and on the second and fourth reÐnement levels (relaxation
solver) vs. interparticle separation. (b) Comparison of the force accuracy on the fourth reÐnement level with the theoretical accuracy of a Plummer softened
force, both vs. interparticle separation in units of the fourth-level cell length.

resolution of di†erent codes. Here we present a test showing
the accuracy of force calculations in PM and ART schemes
and compare them to the Plummer softened force often
used in both P3M and TREE codes.

We used a 643 base grid with a massive particle in the
center and a second particle placed randomly nearby. The
reÐnement meshes were constructed up to the speciÐed
level, so that both particles were located on this level. The
usual potential and force calculations (described above)
were then performed to get the pairwise force between these
two particles which was compared with the ““ exact ÏÏ
Newton shows the results of the force calcu-force.7 Figure 6
lation with the FFT method (i.e., ART without reÐnements)
and with the relaxation method at di†erent levels of reÐne-
ment. We plot relative acceleration errors calculated as
follows :

error \ o acalc o[ o atheor o
o atheor o

,

where is the acceleration calculated on the mesh ando acalc ois the theoretical acceleration. The upper panel ino atheor o shows the relative force error versus the inter-Figure 6
particle separation, given in the units of the base grid, for a

7 We should note that particles in the CIC scheme (see have a cubic° 2)
rather than a spherical shape so that the exact force at small separations is
not an inverse square function of distance.

pure PM calculation and for the second and fourth reÐne-
ment levels. Note that despite the general similarity of the
shape of FFT and relaxation forces, the scatter of the latter
at small separations is larger than that of the Theformer.8
scatter at small separations does not, however, mean that
we have the same errors in particle orbits. We have per-
formed a test placing two particles at the distance of 2 grid
cells (where the scatter is largest) and giving them velocities
in such a way that in case of a zero force error they would
stay on a circular orbit. The deviation of the diameter of the
orbit from its true value is a measure of the code accuracy.
We performed the test for the PM force (two particles on
the zeroth level at the distance of two base grid cells from
each other) and relaxation force (two particles on the
second reÐnement level at the distance of 2 second-level
cells or 0.5 zeroth-level cells). The resulting particle trajec-
tories are shown in After more than two orbitalFigure 7.
periods the particles stayed on the nearly circular orbit,
with maximum error in diameter of about 8%. Note that we
did not observe either signiÐcant drift of the orbit center or
any catastrophic break of the trajectory. We conclude that
even for separation equal to the resolution the code pro-
duces reasonably accurate trajectories of particles.

The lower panel in shows the relative error forFigure 6
ART force calculated on the fourth level versus distance in

8 However, the magnitude of scatter is typical for PM codes. See, for
example, Fig. 1 in or Fig. 2b inVillumsen (1989) Gelb (1992).
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FIG. 7.ÈThe circular motion test. Two particles were placed 2 grid cell lengths apart and were given velocities in such a way that in case of a zero force
error they would stay on a circular orbit. The dashed line shows the trajectory (two orbital periods) of two particles moving on the zero PM level (at the
distance of two base grid cells from each other) and the solid line shows the trajectory of particles moving on the second reÐnement level (at the distance of 2
second-level cells or 0.5 zeroth-level cells). After more than two orbital periods, the particles stayed on the nearly circular orbit with maximum error in
diameter of about 8%.

units of the fourth-level mesh cell, together with the relative
error corresponding to the Plummer softened force (solid
line) with the softening parameter v [/P 1/(r2] v2)1@2]
equal to the size of the fourth-level cell. Comparison shows
that while the ART force error Ñuctuates around zero for
distances greater than two mesh cells, the Plummer softened
force is considerably weaker than 1/r2 law for up to six grid
cells. The relation between resolution of the ART code (two
mesh cells of the maximum reÐnement level), andhART,Plummer softening length is thus vB 3hART. Gelb (1992)
studied the shape of the Plummer softened force in his P3M
code. The result is consistent with ours Fig.(Gelb 1992,
2.4)Èthe force starts to fall down at a distance about Ðve
times larger than the softening length.

4.2. Zeldovich Pancake Collapse
One-dimensional plane wave collapse in an expanding

universe is one of the traditional tests of N-body codes
& Shandarin et al. In this(Klypin 1983 ; Efstathiou 1985).

test, the analytic solution is used to check(Zeldovich 1970)
how accurately the code integrates particle trajectories. If
we know the initial conditions, the solution predicts particle

positions for any other moment of time :

x
i
Z\ q

i
]
A A
2nk
B

cos (2nk Æ q) ,

where are the initial (unperturbed) positions, k is theq
iwavevector, and A(t) is the amplitude. In an )\ 1 universe,

where is a scale factor at the crossing time.A\ a(t)/a0, a0The corresponding velocities can be obtained by di†erenti-
ating the above formula for positions.

We used a base grid of 323 cells with 643 particles. The
particle positions and velocities were initially perturbed
using the Zeldovich approximation. The particle trajec-
tories were integrated by the ART code with three levels of
reÐnement (the density threshold for opening a new level
was twenty particles in a cell on the base grid and three
particles in a cell for any reÐnement level). In weFigure 8
show one-dimensional phase diagrams at the crossing time
that compare results of the ART code with results of the
PM code (grid of 323 cells). The Ðgure shows that the ART
code follows the analytic solution more accurately than the
PM code. This result is shown quantitatively in Figure 9,
where we plot rms deviations of the particle positions
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FIG. 8.ÈPlane wave collapse test : phase diagram in Lagrangian coordinates q (a) with 3 reÐnement levels and (b) in the PM simulation with a 323-cell grid
at the crossing time. Solid line, analytic solution ; polygons, numerical results. The number of polygon vertices is equal to the mesh level plus three, so that
triangles show particles located on the base grid, squares show particles located on the Ðrst reÐnement level, and so on. (c, d) Corresponding phase diagram
for physical coordinates x. The Lagrangian coordinates show the di†erences between ART and PM results more clearly, because at the crossing time the v-x
phase diagram is almost vertical in the central part of the pancake.

and velocities from the exact solution as a function of
time et al.(Efstathiou 1985),

*xrms \ [; (x
i
[ x

i
Z)2/; (x

i
Z[ q

i
)2]1@2 ,

*vrms \ [; (v
i
[ v

i
Z)2/; (v

i
Z)2]1@2 .

Starting from the moment when the Ðrst reÐnement level
was created (a B 0.29) the rms deviations were systemati-
cally lower in the ART code than in the PM code.

4.3. Spherical Infall Test
An analytic solution describing spherical infall of

material onto an overdensity in an expanding cosmological
framework was developed by & GoldreichFillmore (1984)
and As noted by theBertschinger (1985). Splinter (1996),
problem possesses a symmetry di†erent from the intrinsic
planar symmetry of the mesh codes, which makes it a useful

and strong test. The analytic solution describes the evolu-
tion of a spherical uniform overdensity in ado/o \ d

i
> 1

region that has proper radius at some initial time in aR
i

t
iÑat Einstein-de Sitter universe. As the density contrast

grows, the matter initially inside is increasingly deceler-R
iated. Eventually it stops expanding and turns around to

collapse. If the initial Hubble Ñow is unperturbed (all pecu-
liar velocities are initially equal to zero), the initial turn-
around occurs at the time tita,

tita\
3n
4

d
i
~3@2t

i
.

At this moment the initial overdensity reaches its maximum
radius,

rita \ R
i
d
i
~1 .

Later on, shells of successively larger and larger radii turn
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FIG. 9.ÈPlane wave collapse test : rms deviations of (a) coordinates and
(b) velocities from the analytic solution vs. the expansion parameter for the
PM code (solid line) and for the ART code with three levels of reÐnement
(dashed line). Starting from the moment when the Ðrst reÐnement level was
introduced (a D 0.29), the rms deviations of the ART code were lower than
those of the PM code.

around. At a given time a shell of radiust ? tita,

rta(t) \ rita
A t
tita

B8@9

starts to collapse (Bertschinger 1985).
The solution for the density proÐle of the overdensity is

self-similar in terms of the dimensionless variable j 4 r/rta(t)and for j > 1 can be expressed as & Goldreich(Fillmore
1984 ; Bertschinger 1985)

D(j) B 2.79j~9@4 ,

while at larger j the main feature of the solution is the
presence of sharp caustics.

We modeled the spherical infall problem described above
by distributing 323 particles uniformly on the 323-cell grid
(in the centers of the grid cells) and placing additional par-
ticles in a sphere of radius 2 grid cell lengths in the center of
the computational volume. The number of additional par-
ticles determines the initial overdensity, which we have
chosen to be We integrated particle trajectoriesd

i
\ 0.2.

from up to a \ 10.1, taking 10,000 steps toa
i
\ t

i
2@3 \ 0.1

ensure that particles move only a fraction of a mesh cell in a
single time step on any of the Ðve reÐnement levels, which is

the condition required for the integration to be stable. The
reÐnement levels were introduced in the regions where
density was equivalent to more than six particles in a cell
and the number of levels was limited to Ðve, thus making
the e†ective resolution 1024 in the highest density regions.
In the calculated density proÐle is compared withFigure 10
the analytic solution (from Tables 4 and 5 of Bertschinger

We see a good agreement between the calculated1985).
density proÐle and the analytic solution at all radii down to
the resolution limit.

4.4. Realistic Cosmological Runs : Comparison with
PM Code

To test the performance of the code in realistic cosmo-
logical simulations, we made a set of runs using ART and
PM codes with the same initial conditions and di†erent
spatial resolutions and compared the resulting particle dis-
tributions. In the Ðrst four runs we simulated an L \ 20 h~1
Mpc box with N \ 323 particles, assuming a Ñat "CDM
cosmological model h \ 0.7, In the()" \ 0.7, p8\ 1.0).
ART runs we allowed for two levels of reÐnement starting
from 643 and 1283 gridsÈwe will call these runs ART
643] 2L and ART 1283] 2L. The number of time steps
was D1000 in ART 643] 2L and D2000 in the ART
1283] 2L run. The reÐnement levels were introduced
wherever the density exceeded a threshold value equivalent
to more than 5 particles per cell. The PM code was run with
643-cell (PM 643) and 2563-cell (PM 2563) grids. In Figure

we show the projected particle distribution at z\ 0 from11
these four runs, with a subset of particles belonging to one
of the halos shown in a smaller window. The global dis-
tribution of particles and halos is well reproduced by the
ART code. Also, halos in the ART 643] 2L simulation are
much more compact than in the PM 643 simulation. This
result is shown quantitatively in where weFigure 12,
compare density distribution functions (the fraction of the
total mass in the regions of a given overdensity) in these
simulations. The density distributions for all runs were
computed after rebinning the density Ðeld to the 2563-cell
grid. The resolution of a simulation puts limits on the
maximum density in the halo cores because gravitational
collapse virtually stops at scales of D1 grid cell (e.g., Klypin

Therefore, the density in the halo cores (the high-1996).
density tail of the distribution) is a good indicator of the
spatial resolution. We note that the density distribution
functions for both the ART 643] 2L and the PM 2563 runs
show approximately the same behavior, reaching over-
densities of B2 ] 104, while the PM 643 run fails to
produce halos with overdensities greater than B5 ] 103.
We therefore conclude that the ART code produces density
Ðelds similar to those of a PM code of comparable
resolution.

The Ðrst application of the code was the study of the
structure of dark matter halos. Therefore, as a Ðnal test we
compared the halo density proÐles in the ART and PM
simulations. The size of the simulation box, L \ 15 h~1
Mpc, was chosen to be the same as in the larger simulations
described in the next section. The rest of the parameters
were the same as in the above simulations. We simulated
the evolution of the 323 particles using the PM code with a
2563-cell mesh and the ART code with a 643-cell base grid
and three levels of reÐnement. As before, we reÐned regions
where the local density exceeded a threshold value of about
5 particles per cell. A halo-Ðnding algorithm (described in
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FIG. 10.ÈSpherical infall test : the simulated density proÐle ( Ðlled circles) compared with the analytic solution (solid line). The points for the analytic
solution are taken from Tables 4 and 5 in The simulated density proÐle was constructed by estimating the density in concentric sphericalBertschinger (1985).
shells of logarithmically increasing thickness, with the smallest radius corresponding to the maximum resolution. The error bars correspond to the Poisson
noise.

the next section) was applied to the resulting particle dis-
tribution. In we present the density proÐles for sixFigure 13
halos of di†erent masses. The mass resolution in these simu-
lations (1.2] 1010 determined the mass range of halos.M

_
)

The most massive halo in consists of about 5000Figure 13
particles, while the least massive contains only about 100
particles. The density proÐles of PM and ART halos agree
reasonably well down to the resolution limit (D60 h~1 kpc).

5. AN APPLICATION : STRUCTURE OF DARK MATTER

HALOS IN CDM AND "CDM MODELS

5.1. Motivation
We used the code to study the structure of dark matter

halos in two of the currently popular cosmological models :
the standard cold dark matter (SCDM) and cold dark
matter with cosmological constant ("CDM) models. Dark
matter halos play a crucial role in the formation and
dynamics of galaxies and galaxy clusters. Therefore, theo-
retical predictions about the structural and dynamic
properties of the halos can be compared with observations
and used as a powerful test of a given theoretical model. The
numerical study of the halo structure requires very high
spatial dynamic range (at least D104) because the simula-
tion box has to be large enough to account correctly for
large perturbation waves and the force resolution has to be

high enough to make predictions in the observational range
(¹5 kpc). The ART code was designed to handle such high
dynamic ranges.

The properties of dark matter halos were intensively
investigated recently for a variety of cosmological models.
Early numerical studies (Frenk et al. 1985, 1988 ; Quinn,
Salmon, & Zurek et al. indicated1986 ; Efstathiou 1988)
that the density proÐles of dark matter halos in hierarchical
clustering models in a Ñat )\ 1 universe were approx-
imately isothermal [o(r) P r~2], in agreement with analytic
results & Goldreich The(Fillmore 1984 ; Bertschinger 1985).
dependence of the halo density proÐles on the initial pertur-
bation spectrum and on speciÐc parameters of the cosmo-
logical model were also studied both analytically (Ho†man
& Shaham and numerically (e.g.,1985 ; Ho†man 1988)

Evrard, & Richstone These early numericalCrone, 1994).
studies, however, lacked the necessary mass and spatial
resolution to make reliable predictions on the structure of
the halo cores. To overcome the resolution limits, substan-
tial e†orts were made to simulate the formation of halos
from isolated density perturbations (e.g., & Carl-Dubinski
berg or to resimulate, with a higher1991 ; Katz 1991)
resolution, halos identiÐed in large low-resolution runs

Frenk, & White hereafter NFW;(Navarro, 1996a, Tormen,
Bouchet, & White These simulations have the advan-1997).
tage of simulating halos in a wide mass range with homoge-
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FIG. 11.ÈComparison of projected Ðnal distributions of 323 particles in pure PM runs with (a) 643-cell and (d) 2563-cell grids and in ART runs with two
levels of reÐnement and base grids of (b) 643 and (c) 1283 cells. In the small windows we show subsets of particles belonging to one of the halos (the same halo
for all runs).

neous spatial and mass resolutions. However, it is hard to
infer statistically reliable results from these simulations
because only a few halos are simulated. In a direct simula-
tion one can get a statistically signiÐcant sample of halos
that is suited for more detailed analysis. Studies of the struc-
ture and dynamics of halos extracted from high-resolution
direct simulations were done by et al. andWarren (1992)

& Lacey et al. used a TREECole (1996). Warren (1992)
code to simulate the evolution of 1283 particles in an )\ 1
universe with scale-free initial conditions. The force
resolution was determined by imposing a Plummer soften-
ing of v\ 5 kpc. Special emphasis was given to the investi-
gation of halo shapes. Similar initial conditions were used in
the study by & Lacey who used a P3M code toCole (1996),
evolve 1283 particles. The resolution in the latter simula-

tions was L /v\ 3840, where L is the size of the computa-
tional volume and v is the Plummer softening parameter.
The results indicated that the density proÐles of all simu-
lated halos are well Ðtted by the analytical model of NFW.
This model has o P r~1 at small radii and steepens smooth-
ly to o P r~3 at a scale radius r

s
:

o(r) P
1

r(1 ] r/r
s
)2 . (19)

The density proÐle described by this expression is singular,
because the density rises arbitrarily high when r ] 0,
forming a cusp. The cuspy structure of the central parts of a
halo thus represents a generic prediction of the model.
Although the proÐle is consistent with current X-rayNFW
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FIG. 12.ÈComparison of density distributions (fractions of the total mass in the regions of a given overdensity) for PM and ART (two reÐnement levels)
runs. The density distributions for all runs were computed after rebinning the density Ðeld to the 2563-cell grid. Note that the density distribution functions
for both ART 643] 2L and PM 2563 runs show approximately the same behavior, reaching overdensities of B2 ] 104, whereas the PM 643 run fails to
produce halos with overdensities greater than B5 ] 103.

and gravitational lensing observations of galaxy clusters
the o P r~1 behavior is in contradiction with(NFW),

observations of dynamics of dwarf spiral galaxies that imply
Ñat central density proÐles & Primack(Flores 1994 ; Moore

These observations can serve as one of1994 ; Burkert 1996).
the critical tests of any model that includes a dark matter
component because it is generally believed that the
dynamics of the dwarf spiral galaxies is dominated by dark
matter on scales r º 1 kpc. The fact that the proÐleNFW
holds for a variety of cosmological models &(NFW; Cole
Lacey indicates its possible universality for CDM-like1996)
models. The goal of the present study was to investigate the
structure of dark matter halos formed in a "CDM model.
This model is currently one of the most successful scenarios
of structure formation in the Universe. It is, therefore,
important to check whether the central cusp is present in
halos formed in this model.

5.2. Simulations
To study the structure of dark matter halos, we simulated

the evolution of 643 particles in standard CDM ()\ 1,
h \ 0.5, and "CDM ()\ 0.3, h \ 0.7,p8 \ 0.63) )" \ 0.7,

models. We made three runs : one high-resolutionp8\ 1.0)
run (resolution D2 h~1 kpc) for each model, and a lower
resolution run (resolution D8 h~1 kpc) for the "CDM

model to study the e†ects of resolution. In terms of the
Plummer softening length (see our resolution corre-° 4.1),
sponds to L /vB 12,000 for the high-resolution runs and
L /vB 3000 for the low-resolution run. The simulations
were started at z\ 30, and the particle trajectories were
integrated by taking 3872 time steps in the low-resolution
run and 7743 time steps in the high-resolution runs. The
size of the simulation box, L \ 15 h~1 Mpc, determined the
mass resolution (particle mass) as 3.55 ] 109 h~1 forM

_CDM and 1.06] 109 h~1 for "CDM.M
_

5.3. Halo-Finding Algorithm
To identify halos in our simulations, we use an algorithm

similar to that described in Primack, & HoltzmanKlypin,
The algorithm identiÐes halos as local maxima of(1996).

mass inside a given radius. The efficiency of the algorithm
was improved by incorporating the idea of et al.Warren

of Ðnding approximate locations of density peaks(1992)
using particle accelerations. This idea is based on the prin-
ciple that particles with the largest accelerations should
reside near the halo centers, which is true for halos with
roughly isothermal density proÐles. In practice, this way of
Ðnding density maxima has proved to be quite efficient. The
halo identiÐcation algorithm can be described as follows.
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FIG. 13.ÈComparison of density proÐles for halos identiÐed in PM (dashed lines) and ART (solid lines) simulations (323 particles) of comparable
resolution (D60 h~1 kpc) with the same initial conditions.

1. The particles are sorted according to the magnitude of
their scalar accelerations.

2. The particle with the largest acceleration determines
the approximate location of the Ðrst halo center. Particles
located inside a sphere of radius centered at the halorinitcenter are assigned to the same halo and are excluded from
the list of particles used to identify halos. The radius isrinitan adjustable parameter ; we use a radius approximately
twice as large as the force resolution of a simulation. The
procedure repeats for the particle with the largest acceler-
ation in the list of remaining particles. The peaks are identi-
Ðed until there are no particles in the list.

3. When all the density peaks are identiÐed, we proceed
to Ðnd more accurate positions of the halo centers. This is
done iteratively by Ðnding the center of mass of all particles
inside and displacing the center of the sphere to therinitcenter of mass. The procedure is iterated until convergence.

4. When the halo centers are found, we increase untilrinitthe overdensity inside the corresponding sphere reaches a
certain limit. The limit is based on the top-hat model of
gravitational collapse, which predicts a typical overdensity
for virialized objects of D200 in CDM and of D334 for our
"CDM model (e.g., et al. & SutoLahav 1991 ; Kitayama

However, we denote halo radius and the mass inside1996).
the halo radius as and respectively, regardless ofM200 r200,the actual value of the limit. Smaller halos located within a
radius of a bigger halo are deleted from the list.r200

As output we get a list of halo positions, velocities, and
parameters (such as andr200 M200).

5.4. Results : Halo Density ProÐles
We applied the halo-Ðnding algorithm described above

to identify halos in the simulations at zero redshift. Only
halos with more than 100 particles within were takenr200from the full list. We also present results for relatively iso-
lated halos, excluding all halos that have close (r \ 2r200)neighbors of mass more than half the halo mass. The
density proÐles were constructed by estimating the density
in concentric spherical shells of logarithmically increasing
thickness, with the smallest radius corresponding to the
maximum resolution. The resulting proÐles were Ðtted with
the analytical formula of taking the scaleNFW (eq. [19]),
radius as the Ðt parameter. In Figures and we showr

s
14 15

density proÐles of nine halos of di†erent masses identiÐed in
the high-resolution CDM and "CDM simulations, along
with the analytic Ðts to the halos. The proÐle appearsNFW
to be a good approximation for halos of all masses (within
the mass range of our simulations) in both CDM and
"CDM models.

argued that the concentration parameter, c\NFW
(see of a dark matter halo depends on ther200/rs eq. [19]),

halo mass. They found that low-mass halos are more cen-
trally concentrated than high-mass ones, which possibly
reÑects a trend in the formation redshifts of halos. Figure 16
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FIG. 14.ÈSolid lines : Density proÐles for nine halos of di†erent masses taken from the CDM simulation with 643 particles (resolution D2 h~1 kpc).
Dotted lines : Best Ðt by the analytic proÐle of et al. Numbers in each panel indicate the mass of the halo inside a radius corresponding to anNavarro (1996a).
overdensity of 200.

shows the concentration c as a function of halo mass (M200)for halos identiÐed in our simulations. The solid curve rep-
resents a theoretical prediction (see for discussion)NFW
assuming the deÐnition of the formation time of a halo as
the Ðrst time when half of its Ðnal mass lies in pro-M200genitors with individual masses exceeding a fraction
f\ 0.01 of This particular value of f seemed toM200.
provide the best approximation to the numerical results of

for the CDM model. The results of both the CDMNFW
and the "CDM simulations agree reasonably well with this
curve. The larger spread of parameter c for low-mass halos
arises mainly from statistical noise. The lowest mass halos

contain a few hundred particles within(M200 D 1011.5 M
_
)

their and thus have more noisy density proÐles (typicalr2002 p error in log cD 0.2È0.3) than more massive halos
that have tens of thousands of particles(M200 [ 1013 M

_
)

(error in log cD 0.05).

5.5. E†ects of Resolution
It is important to model reliably the structure of the

central part (r \ 10 h~1 kpc) of a halo because that is the
part for which we can compare model predictions with
observational results. Unfortunately, that part is also where
force resolution may strongly a†ect the shape of the density

proÐles. To study possible e†ects of force resolution, we
have compared density proÐles of the same halos taken from
"CDM simulations of di†erent resolution described in

In we compare density proÐles of four halos° 5.2. Figure 17
from these simulations. As before, the density proÐle is
drawn only to the resolution limit of the simulation. We
conclude that, up to the resolution limit, the lower
resolution density proÐle follows the higher resolution
density proÐle.

5.6. Conclusions
We have studied the structure of dark matter halos in

CDM and "CDM models with a resolution of D2 h~1 kpc
in a box of 15 h~1 Mpc.

1. We found that for the density proÐles of allr \ r200,halos in both CDM and "CDM simulations are well Ðtted
by the analytical formula of(eq. [19]) NFW.

2. The mass dependence of the halo concentration
parameter c in our simulations is consistent with the results
of NFW.

3. The fact that our results for the CDM model agree
with the results of serves both as a Ðnal test of theNFW
presented code and as an independent check of their
method with results from direct cosmological simulations.
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FIG. 15.ÈSame as but for "CDM. Numbers correspond to mass inside a radius of overdensity 334 (seeFig. 14, ° 5.4).

6. DISCUSSION AND CONCLUSIONS

We present a new high-resolution N-body code that
incorporates the idea of an adaptive reÐnement tree

to build a hierarchy of reÐnement meshes(Khokhlov 1997)
in regions where higher resolution is desired. Unlike other
N-body codes that make use of reÐnement meshes, our code
is able to construct meshes of arbitrary shape covering both
elongated structures (such as Ðlaments and walls) and
roughly spherical dark matter halos equally well. The
meshes are modiÐed to adjust to the evolving particle dis-
tribution instead of being rebuilt at every time step. We use
a cubic grid as the zeroth level of the mesh hierarchy. The
size of this grid determines the minimum possible resolution
of a simulation (i.e., resolution in regions where there are no
reÐnements). The code blocks working on the zeroth-level
grid are similar to those of a PM code. To solve the Poisson
equation on reÐnement meshes, we have developed a new
solver that uses a multilevel relaxation method with suc-
cessive overrelaxation & Eastwood et(Hockney 1981 ; Press
al. The solver is fully parallel and an FFT solver is1992).
only twice as fast as our solver for the same number of mesh
cells. In real simulations with the same resolution, the relax-
ation solver outperforms the FFT because the desired
resolution is achieved with a much smaller number of cells
(see The tests presented show that our code° 3.7) (° 4)

adequately computes gravitational forces down to scales of
D1.5È2 mesh cells. The memory overhead in the current
version of the code is rather large compared to that of other
high-resolution codes. The number of mesh cells required,
however, changes very slowly with increasing resolution. At
present, the code is capable of handling a dynamic range of
D10,000 and higher. In our latest runs, for which we have
used modiÐed version of the code incorporating multiple
time steps, we reached a dynamic range of D24,000 for a
system of 1283 particles. Tests of the code performance
show that it is about three times faster than an AP3M code
(and, therefore, a TREE code ; see of com-Couchman 1991)
parable resolution. Still, the condition requiring that par-
ticles move only a certain fraction of a mesh cell at every
time step makes the code CPU rather than memory limited.

The present version of the code is by no means optimal
and we plan the following improvements.

1. The memory requirements of the code can be signiÐ-
cantly reduced if pointers that are used to support the tree
reÐnement structure are shared by siblings (descendants of
the same parent cell). The memory overhead can be reduced
even further by incorporating more elaborate data-storage
algorithms The data structures can also(Khokhlov 1997).
be changed to allow for parallelization on distributed
memory architectures.
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FIG. 16.ÈLogarithm of the concentration parameter, vs. logarithm of halo mass for high-resolution (D2 h~1 kpc) CDM ( Ðlled circles)c\ r200/rs, M200and "CDM simulations (open circles). The solid curve shows the mass-concentration relation predicted from the formation times of halos that best Ðtted the
numerical results of et al.Navarro (1996a).

2. The version of the code presented, like any other high-
resolution code, is constrained by the condition that par-
ticles move only a fraction of a mesh cell in a single time
step on any of the reÐnement levels. To ensure that this
condition is satisÐed on the maximum reÐnement level
requires small time steps that are redundant for particles
moving on coarser meshes. We are now working on integra-
tion schemes with multiple time steps.

3. We plan to integrate the present N-body code with a
high-resolution Eulerian hydrodynamics code (Khokhlov

that works on similar reÐnement meshes.1997)

We have used the ART code to study the structure of
dark matter halos in two cosmological models : standard
CDM ()\ 1, h \ 0.5, and a variant of "CDMp8\ 0.63)
()\ 0.3, We have found that halos)" \ 0.7, p8\ 1.0).
formed in the "CDM model have density proÐles similar to
halos formed in the CDM model. The density proÐles are
well described by the analytical formula presented(eq. [19])
by et al. and have cuspy [o(r) P r~1] struc-Navarro (1996a)
ture in the central (r \ 10 h~1 kpc) parts of a halo, with no
indications of a core down to the resolution limit of our
simulations. A similar model with di†erent parameters

and h \ 0.5), whose parameters are not ideal(p8\ 0.7
because of the rather small Hubble constant, was indepen-
dently studied in recent papers by andNavarro (1996)

Frenk, & White with conclusions di†erentNavarro, (1996b)
from ours. These authors conclude that halos formed in the
"CDM model are less centrally concentrated than in the
CDM model and are thus more in accord with dynamics of
dwarf galaxies. Our analysis has shown that the major
source of this inconsistency lies in the deÐnitions of halo
radius and concentration parameter c : in the above studies
the authors neglect the fact that the virialization radius in
the "CDM model corresponds to an overdensity of 334
rather than 200 ; they also normalize their densities to the
critical density, rather than the average density, of the uni-
verse (as assumed in the top hat collapse model). We were
able to reproduce their results when we followed their deÐ-
nitions. We therefore conclude that halos formed in the
"CDM model have structure similar to that of the CDM
halos and thus cannot explain the dynamics of the central
parts of dwarf spiral galaxies inferred from the galaxiesÏ
rotation curves.
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FIG. 17.ÈE†ects of resolution on halo density proÐles. The proÐles of four halos taken from a "CDM run with D2 h~1 kpc resolution (solid lines) and a
run with D7 h~1 kpc resolution (dashed lines) are plotted down to the resolution limit.
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