Nonlinear evolution of
cosmological fluctuations






z=0.53

| Gpc

|OMpc slice




| Gpc

Q
e

5Mpc sl






-

s L d bk A

s ~ B







.5 Mpc

=

/h Bolsh




7.7 Mpc/h Bolshoi

Small Galaxy

Group




mall Galaxy
Group

Central
Region

3.9 Mpc/h Bolshoi




Coma 1.9 Mpc/h Bolshoi

“Coma” cluster of galaxies

7.7Mpc X

| .9Mpc






Power Spectrum Thursday, October 1
C
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Consider a field of density perturbations in a volume 7\ 8 (7() . P«X )" Eb

The average of the density contrast is equal to zero:

(8(x)> =0

.o

Let's find the dispersion of the density contrast: < g (11)>
Decompose the density contrast into the Fourier spectrum
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We define the power spectrum as

Here the averaging is done over all P(K — 8 R ;2 >
Waves with given k and over the whole space K |

Correlation function is defined as % (l") = < 8()7) S(;"' ?)>

The averaging is done for the whole

volume and over angles of vector F‘ _iRx 2 X ,E’(;'-o-ir"-)
3 Vdsk S e ._‘-———VJK g-\ 2 -
£(r) = ’LBUL T ) % (2m)> K’ )
- LT Vv (Z‘W) L
CKr X
m)” =
(R
(d(wsé)cl‘f e
imaginary

(Kr
e = ws(Krw>9)+i;M(/K’rw59)

2 .
a'JC'J dy os(Krx)= Sonfkr)
o Ky




Thus, we get the relation between the correlation function and the power
spectrum:
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There is an inverse relation:
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Evolution of the power spectrum of dark matter.

three regimes: -

- linear regime: fluctuations increase the amplitude,
but shape of P(k) is the same

108

- mildly nonlinear regime: fluctuations collapse and
amplitude grows faster than in linear regime.
Shape evolves with time.

P(k)
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- Deep nonlinear regime: dark matter has collapsed
into virtualized dark matter halos that do not change
their physical interior mass. In comoving
coordinates they get smaller as universe expands.
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Evolution of BAO wiggles: dumping and shift due to (weak) non-
linear gravitational coupling of modes. Effect is small, but is important |
when we use BAO features to estimate parameters of the Universe.
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circles - results of n-body simulations
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Magenta: initial conditions (z=100)



Correlation function: definition

This 1s usually quantified using the 2-point correlation
function, § (r), defined as an “excess probability” of finding

another galaxy at a distance r from some galaxy, relative to a
uniform random distribution; averaged over the entire set:

dN(r) = p, (L + E(r) AV, aV,

Correlation function is often approximated with a

power law: 5(}/) _ (r / ro )}/

Parameter ro is called the correlation length



Estimators of the correlation function

 Simplest estimator: count the number of data-data pairs, (DD),

and the equivalent number 1n a randomly DD
generated (Poissonian) catalog, (RR) : &(r) _ < > ~1
e

" (RR)

e A better (Landy-Szalay)
estimator 1s:

£(r). - (DD)-2(RD) +(RR)

where (RD) is the number <RR>
of data-random pairs

» This takes care of the edge effects, where one has to account
for the missing data outside the region sampled, which can
have fairly irregular boundaries



Redshift distortions: long waves
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Angular and 3D correlation functions
N _1/2
win) =2 o) -17) dr

I'p. projected distance between pairs of galaxies,

1. distance parallel to the line of sight
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Figure 7. Contours of the two-dimensional correlation function
£(o, ) estimated from the two-year BOSS-CMASS North galaxy
sample (dashed line) at 0.4 < z < 0.7 and for our MultiDark halo

catalog constructed using the HAM technique at z = 0.53.



Redshift distortions: finger-of-god’ effect
on small scales
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Angular correlation function wyp(rp)

S A If only 2-D positions on the sky
| | are known, then use angular
separation 6 instead of distance r:
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Fic. 6.—Projected galaxy correlation function w,(r,) for the flux-limited I _ &(r)=(r/5.59 h™'Mpc) " i
galaxy sample. The solid line shows a power-law fit to the data points, using the i ]
full covariance matrix, which corresponds to a real-space correlation function 0.01 Ll ol L
£(r) = (r/5.59 h~' Mpc) %%, The dotted line shows the fit when using only the 0.1 1 10
diagonal error elements, corresponding to £(r) = (#/5.94 h~' Mpc)™ 7. The r (h™! Mpc)

fits are performed for r, < 20 2~' Mpc.
Fic. 7.—Real-space correlation function &£(r) for the flux-limited galaxy

sample, obtained from w,(r;,) as discussed in the text. The solid and dotted lines
show the corresponding power-law fits obtained by fitting w),(r,) using the full
covariance matrix or just the diagonal elements, respectively.
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Angular correlation function: SDSS results

Two contributions:

- number-density profile of 3

galaxies inside the same halo §‘
=

- clustering of halos —
$—|Q'
vﬁ.
=

Zehavi et al. (astro-ph/0301280)
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Correlation function on
large scales: baryonic
oscillations
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Clustering of different galaxies
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lustering of different galaxies
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Fic. 8.—Top left: Projected galaxy correlation functions w,(r,) for volume-limited samples with the indicated absolute magnitude and redshift ranges. Lines show
power-law fits to each set of data points, using the full covariance matrix. Top right: Same as top left, but now the samples contain all galaxies brighter than the indicated
absolute magnitude; i.e., they are defined by luminosity thresholds rather than luminosity ranges. Bottom panels: Same as the top panels, but now with power-law fits
that use only the diagonal elements of the covariance matrix. [See the electronic edition of the Journal for a color version of this figure.]
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Figure 8. Left panel: Projected correlation function for the 0.4 < z < 0.7 two-year BOSS-CMASS North and South galaxy samples
(blue and magenta open circles respectively) and the MultiDark catalog selected with the HAM procedure at z = 0.53 (solid line). Error
bars for MultiDark give an estimate of the cosmic variance magnitude. BOSS-CMASS error bars were estimated using an ensemble of
600 PTHalos mock galaxies. The transition between the 1st and 2nd halo terms can be seen at ~ 1 h~! Mpec. Flattening of the signal
at intermediate scales and bending at large scales are also evident features. Right panel: Detailed differences between our ACDM model
and BOSS clustering measures is better seen when plotting the quantity =Z(o) o as a function of projected distance (see text).

Z(o) =2

0

£(o, m)dm. (2)

0

In practice, we integrate out to mmax = 200~ Mpc .
We compute the full correlation functions &(o, 7) using
the Landy & Szalay (1993) estimator

§(o,m) =

DD - 2DR + RR (3)
RR
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Figure 9. Left panel: Redshift-space correlation function both for the tow-year BOSS-CMASS North and South galaxy samples at
0.4 < z < 0.7 (blue and magenta open circles respectively) and the MultiDark catalog selected with the HAM procedure at z = 0.53
(solid line). Error bars are obtained in tha same way as in Fig. 8. Right panel: Shown is the quantity £(s) s which better reflects the
differences between our ACDM model and BOSS clustering measures.



Clustering: galaxy morphology
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Fic. 11.—Relative bias factors for samples defined by luminosity ranges.
Bias factors are defined by the relative amplitude of the w),(r,) estimates at a
fixed separation of r, = 2.7 h~! Mpc and are normalized by the —21 < M, <
—20 sample (L =~ L.). The dashed curve is a fit obtained from measurements
of the SDSS power spectrum, b/b, = 0.85+4 0.15L/L, — 0.04(M — M,)
(Tegmark et al. 2004a), and the dotted curve is a fit to similar wy(r,,) measure-

ments in the 2dF survey, b/b, = 0.85 4+ 0.15L/L, (Norberg et al. 2001).
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Figure 2. BAOs in power spectra calculated from (a) the combined SDSS
and 2dFGRS main galaxies, (b) the SDSS DRS5 LRG sample, and (¢) the k / h Mpc—1

combination of these two samples (solid symbols with 1o errors). The data
are correlated and the errors are calculated from the diagonal terms in the co-

variance matrix. A standard ACDM distance-redshift relation was assumed Pe rc ival etal 200 7

to calculate the power spectra with Q2,,, =0.25, Q24 =0.75. The power spec-



