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General equatlon for growth of pertu rbatlons is:
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Particular cases. The simplest case is the flat Universe, wavelength shorter than the
horizon, waves longer than the Jeans mass. This is also the case of the cold dark matter
(negligible random velocities): 1 -3
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Friedmann equation is: (%) = =" (3{:

ow the equation for the density contrast can be written as:
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olution of this equation is found in the form 8 -‘=A t
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Solution for the growth of smaII perturbations is
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Three models: 1) Flat, matter only
2) Flat +Cosmological constant
3) Open, no cosmological constant

Left panel: the same amplitude of fluctuations at early times

Right panel: The same amplitude at z=0




Case: waves inside the horizon, relativistic particles dominate
Growth of perturbations in non-relativistic matter. Fluctuations in the

relativistic matter are wiped out by the free streaming.
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Note that delta is the density contrast

in matter, not in the total density

Introduce new variable: 3, = "@—— A
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The equation for the growth

rate takes the form: e 3 S
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The growing solution of this equation can be found by trying: 8; 0

This gives:
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Transfer Function

Initial spectrum of fluctuations, which was produced during the inflation, is distorted

during the evolution of the Universe by different processes.  —
If 81 is the square of amplitude of fluctuations at given wavevector K ,

K

Then we can write:

S;z; = A KnT(K/‘t)
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Where A is a normalization constant, K is the initial spectrum of perturbations,

and
T(k,t) is the transfer function.

One important case: n=1 is called the Harrison-Zeldovich spectrum.

For some cases we can disentangle the dependencies on k and t. For example, for
LCDM or open CDM models the shape of the spectrum did not change much after the

recombination : T( H,'t) _ T(K) D2 (—6

Where D(t) is the growth-factor of fluctuations. Models wit2 hot neutrinos or warm
dark matter with some rms velocities of dark matter particles may still experience late
changes in growth of perturbations.
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Chessboard of growth of adiabatic perturbations
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Power spectrum evolution



Spectrum of velocities.

Let's find the relation between perturbations in density and perturbations in peculiar
velocity. We are dealing with growing mode, for with there is a unique relation.
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Now the continuity equation can be written in the form:
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Velocities Tuesday, October 09
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We get: )f 1(’,(_9_) g % é 90degrees rotation relative to S

Power spectrum of velocities is:




Power Spectrum Thursday, October 1.
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Consider a filed of density perturbations in a volume 7~V 8 (7C) - P«X ) Eb

The average of the density contrast is equal to zero:
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Let's find the dispersion of the density contrast: < g (Il)>

Decompose the density contrast into the Fourier spectrum
KX
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Change the order of integration:
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We define the power spectrum as

Here the averaging is done over all P(K — 8 R =2>
Waves with given k and over the whole space K |
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Correlation function is defined as % (V‘) = < 8()() S(X+ f)>
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Thus, we get the relation between the correlation function and the power
spectrum:

There is an inverse relation:
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Dependance of P(k) on Qmatter
Amplitude of fluctuations and Qparyons are fixed.
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Dependance of Correlation function on Qmatter
Amplitude of fluctuations is fixed at 5SMpc/h

small Omatter
60 T T T T T T T T

- Q. =0.0469 T Q =02

bar s ~

Q.=0.20 0.25 0.27 0.30 ~ \ "

i y \

40 —

20

re¢(r)

L | M R S

1

—20 | L | |
1 2 4 6 810 20 40 60 80100
r (Mpc/h)



Dependance of Correlation function on Qmparyon
Amplitude of fluctuations is fixed at 5SMpc/h
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