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May 3
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Topic

Brief review of history of the Universe. Distance to the horizon.
Moment of equality. Waves longer and shorter than the
horizon. Shape of the power spectrum. Effects baryons.

Nonlinear evolution of fluctuations: overview. Evolution of
power spectrum. Biases. Redshift distortions. Observations:
power spectrum and correlation function. Dependence on
galaxy morphology and stellar mass.

Large-scale structure: distribution of galaxies in space. Dark
matter halos and galaxies: ways to connect. Halo mass -
stellar mass relation.

Abundance of dark matter halos and sub halos. Evolution of
galaxy luminosity function and star formation rates over time.

Halo properties: density and velocity profiles, concentrations.
Milky Way and Local Group: dark matter and baryons

Galaxy formation. Dark matter - baryons connection.
Adiabatic compression. Flattening of dark matter cusps. Too-
big-to-fail problem. Abundance of dwarf galaxies.




Arrow of time

Main events in the history of the Universe

Energy/Temp Time Event/Epoch
10'7GeV 10*3sec Planck Time
Inflation

10'4GeV 10-3%sec end of Inflation. Reheating. Beginning of Big Bang

10-34sec end of grand unification. Baryogenesis: formation of matter-antimatter asymmetry
300GeV 10"'2sec end of electroweak unification
|GeV 10-5sec Normal physics. Composition of the Universe: n,p, e",e*, Y,V
IMeV Isec Neutrino decoupling. Neutrino do not interact with the rest of matter
0.5MeV Electron-positron annihilation. Composition: n, p, e, Y, V
0.1MeV | 00sec Big Bang Nucleosynthesis: formation of elements He,D, Li
10°K 103yrs Equality of matter and radiation: Pmatter = Prel.particles
3000K =0.3eV 10%yrs Recombination and Decoupling. Composition: H,He, Y, Vv

|Gyr (z=10) First galaxies. QSO quickly form.

z=3 Galaxy formation

z=1-2 Formation of clusters and superclusters.  Acceleration of the Universe.

I3Gyrs

Now




Probing different epochs with observations

Epoch Phenomenon Test
Spectrum of perturbation on ve *Large-scale CMB anisotropies
Inflation P P Y eLarge-scale spectrum of perturbation

long scales

in distribution of galaxies

Moment of equality

Position of maximum in the spectrum
of perturbations

Distribution of galaxies: Spectrum,
sizes of large voids, Superclusters.

BBN

abundance of light elements: He, D, Li

ISM, stellar atmospheres, spectra of
high-z galaxies

Recombination

Small-scale structure of CMB

CMB anisotropies on armin -degree
scales

Acceleration of the Universe

Distances depend on the rate of
expansion

Distances to SNI

Dark matter

eRotation curves of galaxies
*Possible annihilation signal from
centers of galaxies

eX-ray emission from clusters of
galaxies

L ensing of galaxies




Distance to the horizon Question: what fraction of the Universe can be possibly in causal
contact? We need to find the proper distance at z=0 for a point, from which we receive light
for the first time. This will be the distance to the horizon.

We chose a frame, which is most convenient for integration. We are at the origin and the

point, from which we receive the light is along the radius.

We start with FRW:

dst= e - ') +f='ﬂ]

Fix time and find proper distance to an object with coordinate distance ry

1) = aft) ’;‘dr

In order to take the integral, we need to know the coordinate distance to the point, from
which we receive the light for the first time in the history of the Universe. We find this by
putting ds=0 into FRW and integrating it from t=0 till present:
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Important notion: distance to the horizon grows faster than wavelengths of
waves, which expand together with the Universe. Thus, free waves were outside
of the horizon at early moment and cascade inside the horizon at later moments.
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Chessboard of growth of adiabatic perturbations



The Universe is not uniform. We have ignored this when we talked about FRW metric

and when we discuss physics of early Universe such as Big Bang Nucleosynthesis or neutrino
freeze-out (when neutrino decouple from the rest of the matter). There is a reason why we
treated the Universe as homogeneous: the deviations from homogeneity are small and they
were even smaller in the past.

There numerous issues related with perturbations. Big Bang itself cannot explain how the
fluctuations formed. There is a natural source of fluctuations: statistical fluctuations in a
medium, which consists of discrete particles. The amplitude of those fluctuations is roughly
1/sqrt(N), where N is the number of particles in some given volume. There are two problems
with those fluctuations. First, their amplitude is very small. For example, consider a cluster of
galaxies with mass about 1el5 Solar mass. Calculate the number of protons and take square
root of it. This is what we expect from statistical mechanics. Second, the fluctuations (small
or very small) grow relatively slow. This is due to the expansion of the Universe. In the
absence of expansion the fluctuations grow exponentially:

'L/i'd;n

|
80( e J td'd":

V4rGp

Here fJ is the density and f,‘g n is the dynamical time scale. Unfortunately, the
'

fluctuations grow much slower: only as a power-law 8o< A J=I1-2
and statistical fluctuations do not ’

play any role as an origin of fluctuations. Thus, we need something else. So far, the only
explanation for the origin of fluctuations is coming from Inflation.

Regardless their origin, fluctuations can be decomposed into MODES (components).
In addition, we need to pay attention to different physical components: perturbations in

dark matter, in gas, or radiation are different and they evolve differently.

Modes:
A / radiation
7S TR gas er dark

R J/ matter
—> > This g curvature Zadiabatic
Pexrtuvbations

In this mode the metric is perturbed and
The amplitude of perturbations initially
is the same for all different mass
component.




Isocurvature or isothermal fluctuations: total density initially is not perturbed, but each
component is perturbed:
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Different notions:

Decaying and growing modes. Equations of evolution of perturbations are second
order ODE. Those have two solutions: increasing amplitude and declining amplitude.
We ignore the decaying modes almost everywhere except during transitions between
different regimes. Here we need to match solutionsfrom one regime to another. This
involves both modes.

Perturbations inside and outside the horizon evolve typically differently. We will
consider two limiting regimes: much longer and much shorter than the distance to the
horizon.

Perturbations in matter grow differently before and after the epoch of equality
(moment when density of relativistic and nonrelativistic particles equals).

Around the moment of recombination there interesting physical processes (e.g., Silk
dumping), which affect perturbations in baryons.

When the Universe starts to accelerate at late stages (due to the cosmological
constant or dark energy), fluctuations start to grow very slowly.



The rigorous approach to the evolution of perturbations is to trace the evolution of
perturbations in metric caused (and coupled) by perturbations in the energy-stress tensor.
Here is a very short story.

N . . . (o]
We impose small perturbations in metric: -
P P Iy =G ppt h MY
Where h,. p are small perturbations.

Since the metric is a symmetric 4x4 matrix, we have 10 independent functions. There is a
freedom of using the gauge: some variations in metric are just coordinate transformations, not

real physical perturbations. There are 4 free functions for those non-perturbative adjustments.
Of the remaining 6 independent functions:

2 describe scalar perturbations (trace of the metric and the spatial curvature)
1 describes vector (rotation) perturbation (2 components)
1 tensor (gravity wave) (2 components)

We are not interested in the vector modes: they die out as the Universe expands. The gravity
waves lose their energy in the same way as the radiation. Once the grav.waves enter the
horizon, they start to die out.

We are left with two scalar components. One of them is growing and another is decaying.

This is still a lot because we have different physical components (radiation, dark matter, gas)
and we have different regimes of evolution.

In the linear stage of evolution different modes evolve independently. Because of the different

physical components, we need to solve a system of coupled linear differential equations.
There are ways of doing this. Solving the Boltzman equation is the best way. There are

analytical approximations, which produce remarkably accurate results when compared with the
direct Boltzman solutions.

We will be interested in understanding different physical processes and in putting together the

whole picture. When time comes, we will use results of accurate modeling.
Equations, which we will derive are accurate for physical processes and regimes, which we will

use. For example, the growth of perturbations well inside the horizon give a very accurate
description how fluctuations grow at late stages of evolution before they become non-linear.



Wednesday, September 12, 2007
Very long waves KAyt

Adiabatic modes with wavelength much longer than the distance to the
horizon. There are two modes: growing and decaying. Here is the
derivation for the growing mode:
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Each fragment of the wave has size of the horizon at that moment of time. Thus, different
parts of the long wave cannot "communicate" with other parts. Each fragment evolves
independently as a Friedmann universe with slightly different density, but with the same
Hubble constant:
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Because the Hubble constant is the same (this selects the fastest growing mode),
We get:
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Evolution of perturbations at early times:

linear growth

Inflation provides very a simple spectrum of fluctuations: gaussian
fluctuations 1n metrics (=gravitational potential):

(Ad)
This gives the power spectrum of fluctuations in the density
P(k) :
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After Inflation After moment of equality



General equatlon for growth of perturbatlons is:

8+2°‘S ‘17’6["84—
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Particular cases. The simplest case is the flat Universe, wavelength shorter than the
horizon, waves longer than the Jeans mass. This is also the case of the cold dark matter

(negligible random velocities): 1 -3
P:O} .D-m'-'- IJ _sz G”thda
. N 2 8néG z.)"
Friedmann equation is: (%) = 5= ( 3¢

ow the equation for the density contrast can be written as:

olution of this equation is found in the form 8 3)4 t
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Case: waves inside the horizon, relativistic particles dominate
Growth of perturbations in non-relativistic matter. Fluctuations in the
relativistic matter are wiped out by the free streaming.
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Note that delta is the density contrast

2 o in matter, not in the total density

Fr Oeq
The equation for the growth
rate takes the form: ZS 2‘_3% C!S\ 3 S
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The growing solution of this equation can be found by trying: 8; 0
This gives:

Introduce new variable: 3, =
Change variable t->y

=0
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Case: flat Universe with cosmological constant ( a‘ )Z 8ﬁ-6_ JD N /\ Q‘L.
o) " 3z =)

Solution for the growth of smaII perturbations is

22
| JI-\-?C x dzx H:—
- — ‘HQJ[H—DC])?‘ YLA=SL, Hz_
Q \/3
g X=X, A= ( _ﬂ'_\°) O,
f 0
x — (QI\,O)Vs
Kshqu ) QO

4 onsition

£ > Q



Three models: 1) Flat, matter only
2) Flat +Cosmological constant
3) Open, no cosmological constant

Left panel: the same amplitude of fluctuations at early times

Right panel: The same amplitude at z=0




We define the power spectrum as

Here the averaging is done over all P(K) - 8 R =2>
Waves with given k and over the whole space K |

Correlation function is defined as % (r)= < 8(;) S(;"' 7)>

log(P(k))

o W Em Em Em = = .
*
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equality

late equality « » earlier equality

Power spectrum evolution



Friedmann equation: H?

Moment of equality:

pr = (1+(7/8)RYN) oy

pm/a3 +p,./a4 k A
T e T am?

Pe 0a 0
H(?(Qm/a3 + Qr/a4 + Qk/a2 + Q4),

H (

Q. ~ 4.2 x 10~5h2

1 + Zoq = /Y, & 2380082, h2

R.=T,/T,, R8=(4/]])1/3.

R, = heutrino-to-photon temperature ratio

N,=3.62+0.25 (CMB+H,)

N,=3.30+£0.27 (CMB + BAO),



Dependance of P(k) on Qmatter
Amplitude of fluctuations and Qparyons are fixed.
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Dependance of Correlation function on Qmatter
Amplitude of fluctuations is fixed at 5SMpc/h
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Dependance of Correlation function on Qmbaryon
Amplitude of fluctuations is fixed at 5Mpc/h
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Warm dark matter

Random (“thermal”) velocities of dark matter
particles suppress fluctuations in dark matter:
free-streaming effect. Details depend on
particular particle model of wdm candidates.

the wavenumber at which the linear WDM suppression
reaches 50% in terms of matter power, k; /o, w.r.t. the
ACDM case can be approximated as:
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FIG. 1: Ratio between the 3D non-linear matter power spec-
trum of 3 different WDM models (1, 2 and 4 keV, black, blue
and orange curves) at 3 different redshifts (z = 3, 4.2, 5.4,
represented by the dot-dashed, dashed and continuous curves)
and the corresponding ACDM model. The green curve rep-
resents the linear redshift independent suppression in terms

Viel et al 2013

of matter power for a mwpwm = 2 keV model obtained using



Warm dark matter

Simulation mwpwMm|keV]
CDM-W7 —
m2.3 2.322
m2.0 2.001
mi.6 1.637
mi.5 1.456

Lovell et al 2014
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Warm dark matter

Figure 1. Suppression of the linear matter power spectrum of
resonantly-produced sterile neutrino models (solid lines) and their
best-fit thermal equivalent model (dashed lines) relative to CDM,
where Trel = v/ PwpMm/Pcopm- The L46 (solid; green), L7 (solid;
black), and L8 (solid; orange) models are based on the sterile neu-
trino DM production calculations of Abazajian (2014), while S229
(solid; blue) model is based on the more accurate treatment of
Venumadhav et al. (2015). The L7 and S229 models both share an
equivalent thermal WDM model of m = 2 keV (THM2/dashed;
magenta). The shape and large-k behavior of the WDM transfer
functions vary among the sterile neutrino models and compared
with their thermal equivalent models.
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Resonant Sterile Neutrino Dark Matter in the Local and High-z Universe Bozek et al 2015



Bode et al 2001

Fig. 4— Projected density of 20 h~Mpc boxes, on a logarithmic scale of surface density. Left to
right: ACDM, mx=350 eV and mx=175 eV AWDM. Top to bottom: redshift Z =3, 2, and 1. A
simulation with mx ~ 1 keV would have an appearance intermediate between the left and central
columns. (A higher resolution version of this Figure is available at the web site referred to in the
introduction.)



LCDM WDM

Lovell et al 2014



