
– 1 –

1. THE VIRIAL THEOREM: Proof

Set up: We have an isolated system of N objects. Masses, coordinates and velocities are given:
mi, !ri, !Vi.

Now we are looking for a relation between the total kinetic energy and the total potential
energy. The energies are:
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We start with defining the moment of inertia:
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We will differentiate I twice with respect to time t and then use equations of motion. At some
moment we will also need to use the Newton’s law of gravity.
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Now the second derivative:
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Time to use the equations of motion:
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Take the last three terms in eq. 4 and substitute accelerations with their expressions in equations
of motions:
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Note that in this double sum the index i is independent of index j. As the matter of fact, we can
use any letter, the result is the same. In equation (7) we can swap the indexes: i ⇔ j. Thus,
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Collect terms with xi: x2
i − 2xixj + x2

j = (xi − xj)2 and do the same for other components.
We rewrite the sum S in a much more compact way:
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Going back to eq. 4 we get:
d2I
dt2

= 2K + W. (9)

This is the virial theorem. Typically it is applied with the assumption that the d2I/dt2 = 0
implying a stationary system.

2. Limits of applicability

Two important details: (1) we did not do any averaging over time to come to the final expres-
sion. As long as the second derivative of the moment of inertia is zero, the virial theorem holds.
In this form the virial theorem cannot be used for, say a binary star system on elongated orbit
because the moment of inertia changes at each moment of time. (2) The kinetic and potential
energies are total energies of all particles in the system. If we do not have information about some
component of the system (e.g., dark matter) we cannot apply the theorem to estimate the mass of
the system. We cannot even get the mass of the visible component because in our derivation we
used gravitational accelerations, which depend on all matter, not only on its visible part. There is
another complication: the system is supposed to be isolated. If it is not (as often is the case), the
theorem cannot be used.

There are other ways to derive the virial theorem, which actually give somewhat different
results. One typical situation is a system, which instantaneously not stationary, but when averaged
over time gives 〈d2I/dt2〉 = 0. In this case the virial theorem reads:

2〈K〉 + 〈W〉 = 0. (10)

In other words, averaged over time kinetic and potential energies still obey the virial relation. Note
that this is a different statement as compared with eq. (9) where the energies are instantaneous
quantities. The time-average form of the virial theorem is not very useful in the case of galaxies or
even clusters of galaxies because those systems evolve over time quite substantially. So, it is not
clear over what period of time the averaging should be done. Nothing to say that observationally,
time averaging of individual galaxies is unrealistic: should we wait a billion year to find the time-
average of kinetic energy of our Milky Way galaxy? The instantaneous form is a bit easier to
handle: we need to estimate the rate of change of the moment of inertia.

Virial theorems also are applicable to stars where the kinetic energy is the thermal energy of
all gas particles. Quantum systems also obey the virial theorems.
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3. Masses of objects and the virial theorem

We can use the virial theorem to estimate the mass of a stationary isolated system. We
introduce the gravitational radius rg of a system:

W = −GM2

rg
(11)

Note that here we do not assume anything about the system. We do not assume that is spherical
or its density is smooth; no assumptions. This equation simply states that potential energy scales
as M2. Details of the mass distribution are hidden in rg. For a system with equal-mass points we
have:

1
rg

= 〈 1
rij

〉. (12)

Another example: sphere with homogeneous density distribution ρ(r) =const and radius R. In this
case W = −3

5GM2/R and rg = 5R/3. Note that in this case the gravitational radius is larger than
the radius of the sphere. Kinetic energy can be parameterized as

K = −M〈V 2〉
2

, (13)

where 〈V 2〉 is the velocity dispersion. Again, no assumptions here: this is always valid. Assuming
that the line-of-sight velocity dispersion is 1/3 of the 3d velocity dispersion, we get the following
estimate of the mass:

M =
3〈V 2

los〉rg

G
. (14)

Here we specifically assumed that the observed rms velocities are equal to the rms velocities of
all material in the system, which may not be correct. However, experience with different systems
(either analytical models or numerical simulations) shows that this is not a bad approximation.
The main problem is to estimate rg. There are a number of problems with the estimate. First,
rg typically is a radius, which is dominated by large-distance pairs. Each pair has a relatively
small contribution, but there are many of them and they dominate the final result. Because
observationally it is more difficult to measure objects in outer radii of a system, we are susceptible to
numerous observational complications (e.g, projection or non-equilibrium effects). Second, spatial
distribution of observed objects may be very different as compared with, say dark matter.

It is remarkable that the virial theorem still gives sensible estimates of masses. It is generally
believed that it gives estimates within a factor of 2-3 of the real values. However, it is difficult to
make those estimate more accurate.


