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1. Elements of Thermodynamics

Motivation: Equations of hydrodynamics are not “closed”: they have a term with gas pressure,
which cannot be found unless we know how it is related with other variables such as gas density
and internal energy. However, equations of hydrodynamics are significantly simpler than the Jeans
equations of stellar dynamics, where the pressure term is a tensor ρσ2

ij . In hydrodynamics pressure
is a scalar: ρσ2

ij = P δij .

Later we will find that the presence of pressure term in the Euler equation brings in an
additional equation = an equation of energy evolution.

Definitions:

• Specific volume

V ≡ 1
ρ
, (1)

where ρ is the gas density.

• Pressure
P =

∆F

∆S
, F =

∆(mv)
∆t

, P =
∆(mv)
∆t∆S

. (2)

• Temperature T
mv2

thermal

2
=

3
2
kT, k = 1.38 · 10−16erg/degree. (3)

• Relation between energy and temperature: 1eV = 1.6 · 10−12erg = 11600degrees.

• Energy per unit mass ε. Energy per unit volume u = ρε = (3/2)nkT (for mono-atomic gas).

• Statistical weight Γ = number of microscopic states, which give the same macroscopic state.
Entropy

S = k lnΓ. (4)

Entropy for collisionless particles can be defined as

S = −
∫

f ln fd3v. (5)

H-theorem states that dS/dt > 0. Entropy is preserved along a trajectory.
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The first law of thermodynamics:

dε

dt
+ P

dV

dt
=

dQ

dt
, (6)

where dQ/dt is the energy per unit time per unit mass from external sources.

The second law of thermodynamics:

Tds = dε+ pdV. (7)

For an adiabatic process dS/dt = 0

Equation of state: ε = ε(P, ρ)

• Ideal gas:
P = nkT, (8)

where n is the number-density of particles.

• Black-body radiation:

P =
ρc2

3
=

u

3
, u = σT 4,σ = 7.57 · 10−15. (9)

Entropy S ∝ T 3.

• Degenerate electron gas (for white dwarfs):

P = 1013(ρ/µe)5/3, non − relativistic, (10)

P = 1.2 · 1015(ρ/µe)4/3, relativistic, (11)

where µe is the molecular weight per electron (1-2)
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More on ideal gas:
P = nkT. (12)

Gas density ρ and molecular weights:

ρ = µmmHn (13)

= µHmHnH , (14)

where mH = 1.67 · 10−24g and µm = molecular weight per particle, µH = molecular weight per
hydrogen atom. For fully ionized hydrogen-helium plasma:

µm =
nH + 4nHe

2nH + 3nHe
=

number − of − baryons

number − of − particles
(15)

µH =
nH + 4nHe

nH
(16)

Helium abundance by mass Y is defined as

Y =
4nHe

nH + 4nHe
. (17)

For Y = 0.25 we have nrmHe/nH = 1/12, and µm = 16/27 ≈ 0.6, µH = 4/3. Now we can write the
equation of state for ideal gas as:

P =
ρkT

µmmH
. (18)

For mono-atomic gas the thermal energy ε is:

ε =
3
2

nkT

ρ
=

3
2

kT

µmmH
. (19)

Heat capacity: amount of heat, needed to raise temperature T by 1 degree:

cV =
dQ

dT
|V =

dε

dT
=

3
2

k

µmmH
, (20)

cP =
dQ

dT
|P =

ε

dT
|P + p

dV

dT
|P =

5
2

k

µmmH
, (21)

cP = cV +
k

µmmH
(22)

The ratio of specific heats:
γ =

cP

cV
= 5/3. (23)

For gas with an arbitrary γ:

ε =
1

(γ − 1)
kT

µmmH
. (24)
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Adiabatic process: no exchange with the outside world (no radiation, not energy release or
conduction):

P = Aργ , (25)

where A is a constant. In this case the entropy is constant: dS = 0. Entropy of ideal gas can be
introduced as

S = cV ln (P/ργ) . (26)

Then,

P = eS/cV ργ , ε =
1

(γ − 1)
kT

µmmH
. (27)

For this process we can write the first law of thermodynamics in the following form:

dε

dt
= −P

d(1/ρ)
dt

=
P

ρ2

rρ

dt
. (28)

When gas emits energy the last equation should be modified. It is more convenient to use energy
per unit volume:

du

dt
= ρ

dε

dt
, (29)

ρ
dε

dt
=

P

ρ

dρ

dt
− nenHΛ(T ). (30)
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Adiabatic atmosphere: Assuming that the Earth atmosphere is adiabatic, find the density
and temperature profiles.

Hydrostatic equilibrium:
1
ρ

dP

dz
= −g. (31)

Equation of state:
P = Aργ , (32)

Parameter A (related to the entropy) is given by conditions at the surface:

P0 = Aργ
0 , P0 = ρ0

kT0

µmH
. (33)

For Earth’s atmosphere µ = 29, γ = 1.4. This gives:

A =
kT0

µmH
ρ1−γ

0 . (34)

Rewrite the equation of hydrostatic equilibrium:

1
ρ

dP

dz
=

A

ρ
γργ−1 dρ

dz
= Aγργ−2 dρ

dz
(35)

Solution is:
ργ−1 = ργ−1

0 − gz

A

γ − 1
γ

. (36)

Rewrite this by dividing both parts of equation by ργ−1
0 and substituting A:

ρ(z) = ρ0

[
1 − z

zH

]1/(γ−1)

, (37)

where the scale height is

zH =
γ

γ − 1
kT0

µmH

1
g
. (38)

Now find temperature using the equation of state:

P = Aργ = ρ
kT

µmH
. (39)

This gives:

T = T0

[
ρ

ρ0

](γ−1)

, (40)

Substitute ρ(z):

T = T0

[
1 − z

zH

]
(41)

Taking T0 = 300K, we get zH = 30 km. This solution is valid only for z < zH . It is not physical
for high elevations!


