Homework 3. AST506

- (1) System consists of two equal-mass spheres. Each sphere has a constant density. Mass and radius of each sphere is $M / 2$ ans R. Distance between centers of spheres is $5 R$. Find gravitational potential and acceleration in points:
- A - center of the left sphere
- B - at the surface of the left sphere, closest point to the second sphere
- C - point between the centers of spheres ($2.5 R$ from each center)
- (2) Prove that the total gravitational energy \mathcal{W} of a spherical system can be written in the form:

$$
\begin{equation*}
\mathcal{W}=-\frac{G}{2} \int_{0}^{\infty} \frac{M^{2}(r)}{r^{2}} d r \tag{1}
\end{equation*}
$$

where $M(r)$ is the mass inside radius r.

- (3) Density profiles of dark matter halos are well approximated by the following function with two parameters:

$$
\begin{equation*}
\rho(r)=\frac{\rho_{0}}{x(1+x)^{2}}, \quad x \equiv \frac{r}{r_{0}} \tag{2}
\end{equation*}
$$

- Find gravitational potential $U(r)$
- Find circular velocity $V_{\text {circ }}=\sqrt{G M(r) / r}$ for the profile. Make a plot of it where on vertical axis you plot $V_{\text {circ }} / V_{\max }$ and on horizontal r / r_{0}. Here $V_{\max }$ is the maximum circular velocity.
- (4) Density profiles of elliptical galaxies and bulges of spiral galaxies can be approximated with profiles:

$$
\begin{equation*}
\rho(r)=\frac{\rho_{0}}{x(1+x)^{3}}, \quad x \equiv \frac{r}{r_{0}} \tag{3}
\end{equation*}
$$

Find the half-mass radius, the total mass, and the total gravitational energy \mathcal{W} of the system.

