Potential of Spherical distributions

Potential of spherically symmetric mess distribution
The Poisson equation $\nabla^{2} v=$ tenge in case of spherical system takes a simpler form:

$$
\frac{1}{r^{2}} \frac{\partial r}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)=\sin \sigma \rho(r)
$$

First Newton theorem ("iron sphere"): gravitational acceleration inside a spherical shall is ogaal to zero

we solve equation $\nabla^{2} v=0, r \leq R_{0}$ with boundary condition $\omega^{-}\left(R_{0}\right)=$ const

General solutions of Laplace equation $\nabla^{2} v=0$ are culled the harmonic functions. Important property of harmonic functions is they can have extrema (either minimum or maximum) only on the boundary. For spherically symmetric distribution the potential on the boundary is constant. Thus, minimum of v is equal to its maximum \rightarrow potential is constant inside the shell
Second Newton theorem: For a spherical object gravitational acceleration outside of the object is the same as for point mass.
4. \vec{g} Use the Gauss law:
$\overbrace{}^{g}$

$$
\oint \vec{g} d \vec{s}=-4 \vec{n} \sigma M
$$

The surface S is a sphere of radius r with counter of the centred object.
$S^{\prime} I_{n}$ this case $\oint_{s} \vec{g} d \vec{s}=-q \int d \Omega \cdot r^{2}=-n g r^{2}$
Thus, the gauss law gives

$$
g=\frac{G M}{1^{2}}
$$

arbitrary distribution of mass in spherically symmetric system

$$
\nabla^{2} v=4 i \in \rho(r) \Rightarrow \frac{1}{r^{2}} \frac{2}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)=\operatorname{mi} \theta \rho(r)
$$

Integrate it once in limits $r \Rightarrow 0-r$

$$
\left.r^{2} \frac{\partial u}{\partial r}\right|_{0} ^{r}=4 \pi \sigma \int_{0}^{r} \rho(t) r^{2} d r \equiv G M(r),
$$

$M(H)$ is the mass inside r
assuming that $\left.r^{2} \frac{\partial U}{\partial r}\right|_{r=0}=0$, we get

$$
\frac{\partial u}{\partial r}=\frac{G M(r)}{r^{2}}
$$

Integrate it again from o to r :

$$
V(r)-V(0)=\int_{0}^{r} \frac{G M(r)}{r^{2}} d r \text {, where } V(0) \text { is the potential }
$$

By convention, $V(\infty)=0 \Rightarrow\left\|V(0)=-\int_{0}^{\infty} \frac{G M(r)}{r^{2}} d r\right\|$
at the center of tan system.

Thus, $\quad U(r)=-\int_{r}^{\infty} \frac{G M(r)}{r^{2}} d r$

Another form of CTr)

$$
U(r)=-\int_{r}^{\infty} \frac{G M(x)}{x^{2}} d x=-\int_{r}^{\infty} \frac{G d x}{x^{2}} \int_{0}^{x} \operatorname{4in} \rho(y) y^{2} d y
$$

Domain of integration: change of the order A integration:

$$
\begin{aligned}
& U(r)\left.=-\int_{0}^{r} d y \cdot \sin p c y\right) y^{2} \int_{r}^{\infty} \frac{G d x}{x^{2}}- \\
&=\int_{r}^{\infty} d y \sin p(y) y^{2} \int_{y}^{\infty} \frac{G d x}{x^{2}}=-\frac{G M(r)}{r}-\int_{r}^{\infty} \frac{G d m}{y}, \\
& \text { here } d m=4 \pi \rho(y) y^{2} d y
\end{aligned}
$$

Examples
(1) Homogeneous sphere:

$$
p=\left\{\begin{array}{l}
\rho_{0}, \text { if } r \leq R \\
0, \text { if } r>R
\end{array} \Rightarrow M(r)=\left\{\begin{array}{l}
\frac{4 \pi}{3} \rho_{0} r^{3}, \text { if } r \leq R \\
\frac{4 \pi}{3} \rho_{0} R^{3}, \text { if } r>R
\end{array}\right.\right.
$$

$$
U(r)=-\frac{G M(R)}{r} \text { for } r \geqslant R
$$

for $r \leq R \quad U(r)=-\frac{G M(r)}{r}-\int_{r}^{\infty} \frac{G d m}{y}=$

King profile: $\rho=\rho_{0} /\left(1+\left(\frac{r}{a}\right)^{2}\right)^{3 / 2}$, $a=$ core radius

$$
\begin{aligned}
& M=\sin a^{3} \rho_{0}\left\{\ln \left(x+\sqrt{x^{2}+1}\right)-x\left(x^{2}+1\right)^{-1 / 2}\right\}, \quad x \equiv r / a \\
& U=-\frac{G M(r)}{r}-\frac{\ln G \rho_{0} a^{2}}{\sqrt{1+x^{2}}} \underbrace{\sim \ln r}_{u(r)} \underset{\sim \ln r / r}{\sim} r
\end{aligned}
$$

