
N-body methods

















Kick and Drift



S.Tremaine, lecture 2011

1. Euler’s method

2. modified Euler’s

3. leapfrog

Equations of motion of particle in force field F(r):

h =dt



S.Tremaine, lecture 2011

eccentricity = 0.2 
200 steps per orbit 
plot shows fractional energy 
error |ΔE/E|

Consider following a particle in the force field of a point mass. 
Set G=M=1 for simplicity. Equations of motion read



Energy conservation (top panel) and drift of orbit 
orientation (bottom panel) for integration with 
constant-step leapfrog scheme. Initial orbit is 
shown with the full curve. 	
!
 1500 accelerations/period.
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The simplest code  is called Particle-Mesh (PM):  
a constant-size cubic mesh is overlayed on computational volume. 	
	 (1) Calculate density in each cell. 	
	 (2) Solve the Poisson equation using FFT. 	
	 (3)Numerically differentiate grav.potential to find acceleration for each particle. 	
	 (4) Move particles by one small time-step. Repeat the procedure.



Poisson equation:      

Expand density and potential into Fourier series:      

Find Fourier components of the potential:     

(1) Use direct FFT to find 	
!
(2) Find 	
!
(3) Make inverse FFT to find 	
	



Adaptive Mesh Refinement algorithm





We can improve the PM method by increasing the resolution only where it is needed: by 
placing additional small-size elements – cubic cells – only in regions where there are many 
particles and where the resolution should be larger. Codes that use this idea are called the 
Adaptive Mesh Refinement (AMR) codes because they recursively increase the resolution 
constructing a hierarchy of cubic cells with smaller and smaller elements in dense regions 
while keeping only large cells in regions that do not require high resolution.  	

There are two ways of doing this: 	

	 — by splitting every element of the mesh, that has many particles, into 8 twice smaller 
boxes (Khokhlov, 1998) 	

	 — by placing a new rectangular block of cells to cover the whole high den- sity region 
(Berger and Colella, 1989).

Adaptive Mesh Refinement algorithm: N-body simulations



Adaptive Mesh Refinement algorithm:

Block refinementCell refinement











Cell refinement: example for spherical shock wave



Oct-Tree

This is a 2D example of a quad-tree. Every square, which has too many particles is split 
into 4 squares, which have 1/2 of original size. In 3D every cubic cell is split into 8 smaller 
cells. If any of new cells still have too many particles, they are also split into 8 even smaller 
cells.  	
The structure is adaptive: the level of the tree depends on local density. When particles 
move, density changes and so does the structure.	
Oct Trees are used for TREE codes and for some types of Adaptive-Mesh-Refinement 
(AMR) codes.	
Once the structure is created, we can find grav.potential or grav acceleration using 
different techniques:	

- Sum contributions from different nodes. Use ‘opening angle’ criterion to select 
appropriate level of refinement. This is for TREE codes.	
- Solve the Poisson equation by different iterative schemes. This is for AMR codes. 	

Modern N-body codes are typically combinations of Particle-Mesh code (very fast) with 
either TREE or AMR additions for high resolution in dense environments.



TREE algorithms
- split particles into groups of different size and replace 
force from individual particles with a single multipole force 
of the whole group. The larger is the distance from a 
particle, the bigger is the allowed size of the particle group.	

Examples of particle grouping algorithms for TREE codes. Left panel: the oct tree for 14 particles presented by blue circles. 
If the number of particles in a cell exceeds a specified threshold (in this case one particle), it is split into 8 small cubic cells 
(4 cells in 2D). Red dashed lines show opening angle θ for a particles close to the centre and for a cell indicated by a thick 
blue square. Middle panel: binary KD tree for the same set of particles. Boundaries of rectangular cells are defined by 
position of medians along each alternating direction. In some cases cells are quite elongated. Right panel: Recursive 
Coordinate Bisection tree. Cells are split at the center of mass with the direction of the bisecting plane being perpendicular 
to the direction of the maximum cell size. Cells are less elongated than in the case of KD trees.	



Tree is truncated once a cell reaches a specified minimum number of particles. In this case the cell called 
a leaf. The number of particles in a leaf can be as low as one. However, it can be significantly larger . If a 
leaf has more than one particle, then forces between particles in the cell are estimated using pair-wise 
summation. This can be faster than building more levels of the TREE hierarchy.	

Multipole expansion. A number of physical quantities is collected for each cell that are used for force 
estimates. GADGET-2 code stores the mass and the center of mass of all particles in a given cell. 
Multipole expansion up to hexadecapole is used in PKDGRAV. Quadrupole expansion was also used. 
There is no rule what order of expansion to select. Low orders are faster to calculate and less memory is 
needed to store the information. At the same time, higher orders of expansion may allow one to use 
larger opening angles resulting in faster overal calculations. Grouping algorithm may also affect the 
selection of the expansion. The bisection trees can produce elongated cells implying that a higher order 
of mass expansion may be needed to maintain force accuracy.	






