


We start discussion of numerical techniques with a very simple case: forces are
estimated by summing up all contributions from all particles and with every particle
moving with the same time-step. The computational cost is dominated by the force
calculations that scale as N2, where N is the number of particles in the simulation.
Because of the steep scaling, the computational cost of a simulation starts to be
prohibitively too large for N > 10°. However, simulations with a few hundred
thousand particles are fast, and there are numerous interesting cases that can be
addressed with N < 10° particles. Examples include major-mergers of dark matter
halos, collisions of two elliptical galaxies, and tidal stripping and destruction of a

dwarf spheroidal satellite galaxy moving in the potential of the Milky Way galaxy.
In these cases it is convenient to use proper, not comoving coordinates.

The problem that we try to solve numerically is the following. For given co-
ordinates r;j,;; and velocities v;,;¢ of N massive particles at moment ¢ = ¢;,;; find
their velocities v and coordinates r at the next moment ¢ = {,ext assuming that the
particles interact only through the Newtonian force of gravity. If r; and m; are the
coordinates and masses of the particles, then the equations of motion are:

d?r; m;(r; —r
_ ¢ Z : i) (8)

dt? r; —r;3
j=1,i#j

where GG is the gravitational constant. Two steps should be taken before we start
solving equations (8) numerically.

. Z szmj
75 — 775



First, we introduce force softening: we make the force weaker (“softer”) at small
distances to avoid very large accelerations, when two particles collide or come very
close to each other. This makes numerical integration schemes stable. Another rea-
son for softening the force at small distances is that in cosmological environments,
when one deals with galaxies, clusters of galaxies, or the large-scale structure, effects
of close collisions between individual particles are very small and can be neglected.
In other words, the force acting on a particle is dominated by the cumulative con-
tribution of all particles, not by a few close individual companions.

There are different ways of introducing the force softening. For mesh-based
codes, the softening is defined by the size of cell elements. For TREE codes the
softening is introduced by assuming a particular kernel, and it is different for differ-
ent implementations. The simplest and often used method is called the Plummer
softening. It replaces the distance between particles Ar;; = |r; — r;| in eq. (8) with
the expression (Arfj + €2)1/2, where € is the softening parameter.



Second, we need to introduce new variables to avoid dealing with too large or too
small physical units of a real problem. This can be done in a number of ways. For
mesh-based codes, the size of the largest resolution element and the Hubble velocity
across the element give scales of distance and velocity. Here we use more traditional
scalings. Suppose M and R are scales of mass and distances. These can be defined
by a particular physical problem. For example, for simulations of an isolated galaxy
M and R can be the total mass and the initial radius. It really does not matter
what M and R are. The scale of time ¢ is chosen as to = (GM/R3)~1/2. Using
M, R, and t; we can change the physical variables r;, vi, m; into dimensionless
variables using the following relations:

~ - R - ~
I‘iII‘iR, ViZVit—, mizmiM, tztto. (9)
0

We now change the variables in eq. (8) and use the Plummer softening;:

N ~ [~ ~ ~ ~
~ _Z mj(ri—rj) dVi & @ - (10)
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All numerical algorithms for solving these equations include three steps, which
are repeated many times:

e find acceleration g(r)
e update velocity v =v+ Av(g)
e update coordinates r =1+ Ar(v)

Here is a simple fragment of a Fortran-90 code that does it using direct summa-
tion of accelerations:

Program Simple
(set parameters)
(read data)

Do ! Main loop of integration
Call Acceleration ! find acceleration for every particle
v = v+gkdt I update velocities
X = X+v*dt ! update coordinates
t =t +dt ! update time
If(t> t_end)exit ! stop when final time is reached
End do

end Program Simple

Subroutine Acceleration ! find accelerations for each particle

g = 0. | set acceleration to zero for all particles
Do i=1,N I for each particle i
Do j=1,N ! add contributions of other particles

g(:,1)=g(:,)+m(G)*(X(:,j)-X(:,1))/ &
sqrt (SUM((X(:,j)-X(:,1))**2+eps2) **3)
EndDo
EndDo
end Subroutine Acceleration



In this code we extensively use Fortran-90 feature of vector operations. For example,
the statement V =V + g x dt means “do it for every element” of arrays V (¢,) and
g(%,7). There are simple ways of speeding up the code. Particles can be assigned
into groups according to their accelerations with each group having their own time
step. In this case particles with large accelerations update their coordinates and
accelerations more often while particles in low density (and acceleration) regions
move with large time step, thus reducing the cost of their treatment. Calculations
of the acceleration can be easily parallelized using OpenMp directives. These opti-
mizations can speed up the code by hundreds of times making it a useful tool for
simple simulations.



4. Moving particles: Time-stepping algorithms

Numerical integration of equations of motion are relatively simple as compared
with the other part of the N-body problem — the force calculations. Still, a wrong
choice of parameters or an integrator can make a substantial impact on the accuracy
of the final solution and on cpu time. To make arguments more transparent, we
write equations of motion in proper coordinates and assume that the gravitational
acceleration can be estimated for every particle. In this case the equations of motion
for each particle are simply:

dv(t dx(t
g, Y ) (11)
Along particle trajectory acceleration can be considered as a function of time

g(x(t)). If we know coordinates xgo and velocities vg at some initial moment to,
then egs. (11) can be integrated from t = ¢y to t; = to + dt:

t1 t1
X1 = Xg +/ v(t)dt, V1 = Vo +/ g(t)dt. (12)
to to

We now expand v(t) and g(t) in the Taylor series around ¢y and substitute those into
egs. (12) to obtain different approximations for x; and v;. If we keep only the first
two terms, we get the first order Euler approximation: x3 = xg¢ + vodt + €, where
€ ~ godt?/2 x O(dt?) and v1 = vo+godt+e, € o O(dt2). Accuracy and convergence V1 = Vo+godt:
of the Euler integrator are low, and it is never used for real simulations. One may
think that adding godt?/2 term to displacements may increase the accuracy, but it
really does not because velocities are still of the first order. In the next iteration the
first-order velocity makes the displacement also of the first order. However, we may
dramatically improve the accuracy by re-arranging terms in the Taylor expansion
in order to kill some high order terms.

X1 = Xg + vodt

Euler @x,v @x,v @X,V




Suppose initial velocity is given not at the moment £y, but a half timestep earlier
at t_y/9 = tg — dt/2. Using coordinates at ¢y we find acceleration go(to). We now
advance velocity one step forward from ¢_; /5 to ¢;/9 =t_;/2 + dt. Note that when
we do it, we use acceleration at the middle of the time step, not on the left boundary
of the time step as in the Euler integrator. We then advance coordinates to moment
t1 = to + dt using the new value of velocity. As the result, the scheme of integration
is:

Vi/2 = V_1/2 + godt, X1 = Xg + vy /2dt. (13)

In order to find the accuracy of this approximation, we first eliminate velocities
from egs. (13): x1 — 2xg + Xx_1 = godt. There is an error in this integrator, which
we can find by using the Taylor expansion for x4; up to the fourth order term.
This gives:

X1 — 2X0 +X_1 = godt + €, (14)

where the error of the approximation is

1 d?g

_ 4

€

Here the second time derivative of the acceleration is estimated at ¢ = ty. This
is a dramatic improvement as compared with the Euler integrator: the error is

proportional to dt* and, as a bonus, there is a small factor 1/12.

Leap Frog (Dx ®x B)x

®v Dv
Euler @X,V @x,v @x,v
t t t t t t



One disadvantage of the leap-frog is that velocities and coordinates are defined
at different moments of time. It is convenient to split the integrator into smaller
steps that allow for synchronization of time moments and are also easier to modify
when the time-step changes. An algorithm of integration of trajectories can be
written as a sequence of operators, which advance particle positions (called drifts)
and change velocities (called kicks). Let K (dt) be an operator (kick) that advances
velocities by time dt. Applying the operator simply means K(dt) : v = v + gdt.
Similarly, the drift operator is D(dt) : x = x + vdt. We also need to specify the
moment when the gravitational acceleration is calculated and the moment when the
decision is made to change the time-step. So, we use G and S operators to indicate
those two moments. For example, a simple constant-step leap-frog integrator can
be written as sequence of GK (dt)D(dt)G K (dt)D(dt)....

Using the K and D operators we can also write the leap-frog integrator which
starts with x and v defined at the same moment of time and ends at ¢+ dt moment:

KDK : K(dt/2)D(dt)GK(dt/2)S. (16)
New accelerations are estimated after advancing coordinates, and the change in the

time-step dt is made at the end of each time-step. The sequence of actions for the
KDK integrator is illustrated in the top panel of Figure 1.

Changing the time-step may be necessary when particles experience a vast range
of accelerations, which is typically the case in high-resolution cosmological simula-
tions. However, changing the time-step results in breaking symmetries and reducing
the accuracy of the leap-frog integrator. It becomes not time reversible and it loses
its ability to preserve the energy. There are some ways to restore these properties,
but they are complicated and never used in cosmology.

Kick—Drift—Kick ®@)x Bx ®)x

Kick and Drift



Equations of motion of particle in force field F(r):

rn4+1 = In+ hvp ; Vpt1 = Vn + hF(ry,) 1. Euler's method
rnt1 =Tn+hve Vpp1 =Va+hF(r,41) 2. modified Euler's

1 1
r =r, + Ehvn  Vpt1 = vp+hRF@) ; rpp =14 Ehvn_l_l 3. leapfrog

h =dt

S.Tremaine, lecture 201 |



Consider following a particle in the force field of a point mass.
Set G=M=1 for simplicity. Equations of motion read

i=v ; v=F@)=-—
T

eccentricity = 0.2
200 steps per orbit

plot shows fractional energy
error |AE/E]|
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Accuracy of energy conservation for a particle orbiting the center of isothermal density
profile p o r~2 in an eccentric orbit with apo- to pericenter ratio 10:1. Trajectories were followed
with different integrators, each integrator using 500 time-steps per orbital period. The Euler

Fig. 2.

time-step shows no long-term energy drift, but errors are large as compared with codes with

scheme gives the worst accuracy (note the change in the y-axis). The leap-frog with a constant
variable time-steps.

Errors are smaller for variable time-step integrators, but they also show a

linear trend with time.
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The simplest code is called Particle-Mesh (PM):
a constant-size cubic mesh is overlayed on computational volume.
(1) Calculate density in each cell.
(2) Solve the Poisson equation using FFT.
(3)Numerically differentiate grav.potential to find acceleration for each particle.
(4) Move particles by one small time-step. Repeat the procedure.

(i.j+1) (i+1,j+1)
L L

(L.J) dx (i+1.))

Fig. 4. Example of the Cloud-In-Cell density assignment in two dimensions. Centers of mesh
cells are shown with large blue circles. Blue dashed square presents boundaries of the cell with
coordinates (i, j). Particle center shown with red cross has coordinates (dz,dy) and its boundaries
are shown as red box. Area of intersection of the red and blue boxes is the mass that the particle
contributes to the cell (¢,5). All four cells indicated in the plot receive a contribution from the
particle.

particle to density p are:

Pij.k = Pijk + (1 —dz)(1 — dy)(1 — dz)
pi—i—l,j,k - pi‘+‘1,jak + dCU(l - dy)(l - dZ) (20)

Pit1,j+1,k+1 = Pit1,j+1,k+1 + dzdydz



Poisson equation: v2¢ — 47TGp

Expand density and potential into Fourier series:

B(x) = Sre™™,  p(x) = Spe’™™

7 ~ —2
Find Fourier components of the potential: QSk — —477ka Ik‘

(1) Use direct FFT to find ﬁk

(2) Find @k
(3) Make inverse FFT to find qb(x)



AMR cyclone simulations

Adaptive mesh simulation of a baroclinic instability at day 6
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Structured vs unstructured AMR

=

Structured: hierarchy of rectangular Unstructured: highly flexible

grids or irregularly shaped meshes of refinement meshes, efficient for cases

cubic cells of complicated region geometry and
boundaries; more sophisticated data

structures and algorithms




Adaptive Mesh Refinement algorithm: N-body simulations

We can improve the PM method by increasing the resolution only where it is needed: by
placing additional small-size elements — cubic cells — only in regions where there are many
particles and where the resolution should be larger. Codes that use this idea are called the
Adaptive Mesh Refinement (AMR) codes because they recursively increase the resolution
constructing a hierarchy of cubic cells with smaller and smaller elements in dense regions
while keeping only large cells in regions that do not require high resolution.

There are two ways of doing this:

— by splitting every element of the mesh, that has many particles, into 8 twice smaller
boxes (Khokhlov, 1998)

— by placing a new rectangular block of cells to cover the whole high den- sity region
(Berger and Colella, 1989).



Adaptive Mest Refinement alyonithm:

Cell refinement Block refinement
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ART/RAMSES: cell splitting
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Cell refinement: example for spherical shock wave
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Oct-Tree / /| /

This is a 2D example of a quad-tree. Every square, which has too many particles is split
into 4 squares, which have 1/2 of original size. In 3D every cubic cell is split into 8 smaller
cells. If any of new cells still have too many particles, they are also split into 8 even smaller
cells.
The structure is adaptive: the level of the tree depends on local density. When particles
move, density changes and so does the structure.
Oct Trees are used for TREE codes and for some types of Adaptive-Mesh-Refinement
(AMR) codes.
Once the structure is created, we can find grav.potential or grav acceleration using
different techniques:

- Sum contributions from different nodes. Use ‘opening angle’ criterion to select

appropriate level of refinement.This is for TREE codes.

- Solve the Poisson equation by different iterative schemes.This is for AMR codes.
Modern N-body codes are typically combinations of Particle-Mesh code (very fast) with
either TREE or AMR additions for high resolution in dense environments.



TREE algorithms

- split particles into groups of different size and replace
force from individual particles with a single multipole force
of the whole group.The larger is the distance from a
particle, the bigger is the allowed size of the particle group.

[\
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N
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(a) Oct (b) KD (c) RCB

Examples of particle grouping algorithms for TREE codes. Left panel: the oct tree for 14 particles presented by blue circles.
If the number of particles in a cell exceeds a specified threshold (in this case one particle), it is split into 8 small cubic cells
(4 cells in 2D). Red dashed lines show opening angle O for a particles close to the centre and for a cell indicated by a thick
blue square. Middle panel: binary KD tree for the same set of particles. Boundaries of rectangular cells are defined by
position of medians along each alternating direction. In some cases cells are quite elongated. Right panel: Recursive
Coordinate Bisection tree. Cells are split at the center of mass with the direction of the bisecting plane being perpendicular
to the direction of the maximum cell size. Cells are less elongated than in the case of KD trees.



Tree is truncated once a cell reaches a specified minimum number of particles. In this case the cell called
a leaf. The number of particles in a leaf can be as low as one. However, it can be significantly larger . If a
leaf has more than one particle, then forces between particles in the cell are estimated using pair-wise
summation. This can be faster than building more levels of the TREE hierarchy.

Multipole expansion. A number of physical quantities is collected for each cell that are used for force
estimates. GADGET-2 code stores the mass and the center of mass of all particles in a given cell.
Multipole expansion up to hexadecapole is used in PKDGRAV. Quadrupole expansion was also used.
There is no rule what order of expansion to select. Low orders are faster to calculate and less memory is
needed to store the information. At the same time, higher orders of expansion may allow one to use
larger opening angles resulting in faster overal calculations. Grouping algorithm may also affect the
selection of the expansion. The bisection trees can produce elongated cells implying that a higher order
of mass expansion may be needed to maintain force accuracy.

/ /\ Cell opening condition. Once the TREE is constructed and all information
’ regarding mass distribution in each cell is stored, we start to find the forces by

/ / / \ / looping through all leaves and for each leaf by walking along the TREE down from

i / /' the largest cells. Each cell of size [ is tested whether angle 6 ~ [/d at which it
is seen by particles in the leaf at distance d is too large. If 6 exceeds a specified

threshold, the force contributions are not taken from the cell itself. We “open” the
cell meaning that we descend to children of the cell and test them regarding their
opening angles. Once the opening angle is small enough, the force contribution
from the cell is accepted, and the algorithm proceeds to the next top-level cell.

Particular implementation of the cell-opening condition changes from code to
code. In GADGET-2 the force is accepted if

0= - < /ag/[GM/ ), (29)

where ¢ is the particle acceleration from the previous time-step, d is the distance
from the particle to the cell of mass M and linear size [. Here « is a tolerance
parameter defining the error of the force. There is an additional condition that
each coordinate distance of the particle and geometrical cell center should be small:



Moving mesh hydrodynamics (MMH) (Pen 1998)

Lagrangian mesh with expansion
limiter to prevent zones from
becoming too distorted

Exploits fact that rotational mode
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expansion limiter prevents the cells from expanding more than a factor of
10 in yolyme.
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