Equations of hydrodynamics: eulerian and lagrangian approaches

Hydrodynamics

=> what are the conditions for using equations of hydrodynamics?

-scales are much larger than the mean-freepoth of particles in the medium

- time-scales are longer than the time-scale of relaxation

- volumes are larger than some 'elementary volume': volume is large enough to have many particles inside it and, at the same time, small enough to have small gradients across the 'elementary volume'

Thermal volocities of particles; $V_{thormal} = \left(\frac{3kT}{m}\right)^{1/2}$

For a neutral gas ten mean-free-path $l = \frac{1}{16}$, where 5 is the cross-section of atoms.

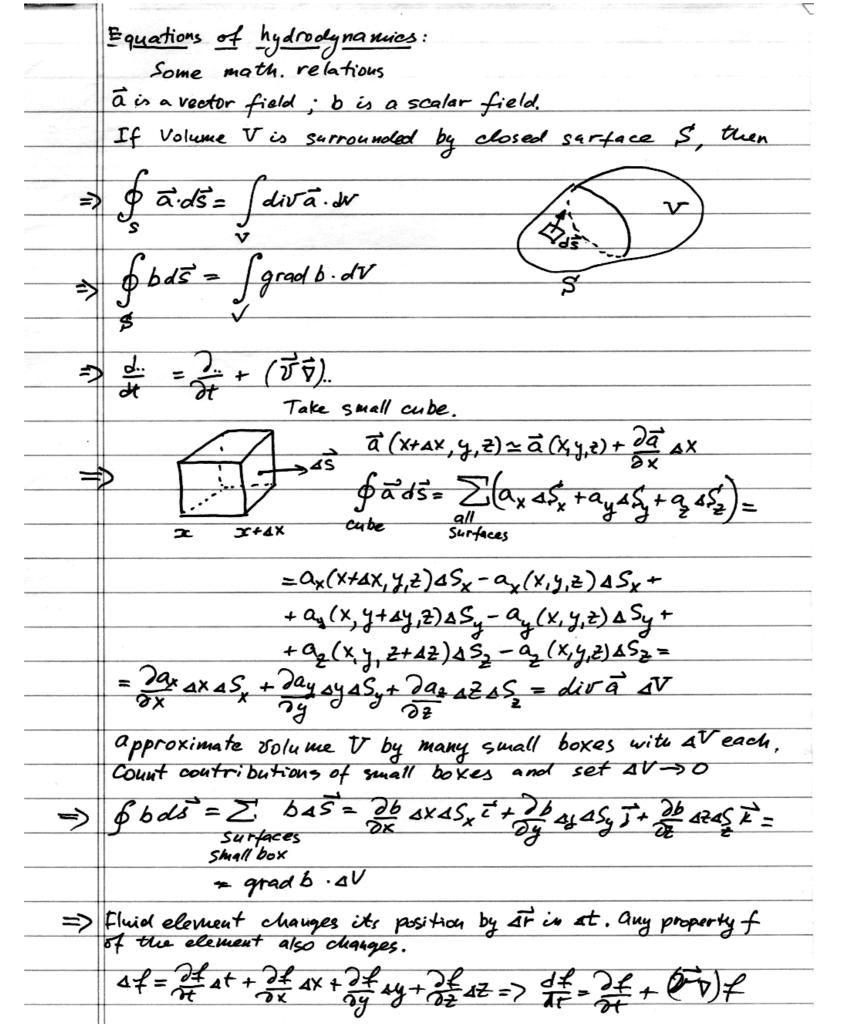
For air; $\sigma = 4.4.66 \, \mathrm{cm}^2$, $n = 10^9 \, \mathrm{cm}^3$

For plasma: two-body relaxation time for electron-proton collisions is $t_{ep} = \frac{3}{4} \left(\frac{m_e}{2\pi} \right)^{1/2} \frac{(kT)^{3/2}}{e^4 n_e l_u \Lambda} = 0.275 \frac{T^{3/2}}{n_e l_u \Lambda}$

Here $M_e = \frac{M_H}{1836}$ - wass of an electron, $e = 4.8 \cdot \omega = electron$ charge

Ne = humber density of electrons lun = conloub logarithm (=10-20)

Systen	parameters	254	mean-free path
air, room Temp.	h=10 cm ³ , T=300K G=4.410 cm ²	5.10 ay = 0.5 ay	2. 10 cm
ISM, disk of Galaxy	ne=1cm3	7. w on/s = 700 kgs	1012cm = 3. 107pc te-p=104sec
Clusters,	ne=103 T=108K Dectrons	7.10°an=0.25 C	10 cm = 30 kpc 13 te-p=1.4.45=
•			= 4.10 y



	Equations of hydrodynamics: - Enler approach			
	- Lagrange approach			
	Euler: Find evolution of parameters of fluid at			
	each point in space and time			
	P, v t 2			
	P			
	Lagrange: Find evolution of each fluid element:			
	4			
	$P_1, P_2, \overline{V_2}$			
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			
357				
, west	Euler formalism: equations of hydrodynamics			
	Continuity equation. Take volume element V. Mass inside V is			
	Spdv			
	Through a surface element ds of tree volume flows out mass product. Total mass leaving the volume V in dt is			
	flows out mass podst. Total mass leaving the			
	volume V in dt is			
· '4	of praside			
	The total rate of change of mass is			
	of [Spdv] = - pods Note the sign			
	Change the integral on the right from surface to volume			
	and change tree order of integration and time derivative			
	() of + div(pr)) dV=0			

	-
3	This relation must be valid for any volume to This can
	be true only if the integrand is equal to zero
	De + 8(p) = 0
	1 07
	Rewrite this equation: Of Top+ por - 0
	The first two terms are equal to $2f + \vec{v} \cdot \nabla \rho = J \cdot \rho$ Thus, $J \cdot \rho + \rho \cdot \nabla \vec{v} = 0$
	Thus,
	$\frac{dt}{dt} + \rho \nabla v = 0$
	For incompressible fluid (e.g. water) dp = 0. In this
	case divide 0.
	This tells us that dist is a measure of compressi-
	bility of fluid.
Εu	ler equation. Take volume V. Pressure force acting
	on tree volume from fluid which
	Surrouds the Volume is
	(*) - P p ds Note the sign
	ppds = Sgradpdv. The rate of change of the
	polis = Sgradpdv. The rate of change of the momentum of fluid inside V is
	(**) Spdv.dv. This gives pdv = -gradp
	Change It to It:
	$ \begin{array}{c} \sqrt{2}\vec{\sigma} + (\vec{v}\nabla)\vec{v} = -\frac{1}{p}\nabla P - \nabla \vec{p} \\ \sqrt{2}\vec{t} + (\vec{v}\nabla)\vec{v} = -\frac{1}{p}\nabla P - \nabla \vec{p} \end{array} $
	Where I is the grav. potential
	where I is the grave potential

Energy equation we start with the first law of thermodynamics:

$$\frac{dE}{dt} + P\frac{dV}{dt} = \frac{dQ}{dt}$$

Here & is internal energy per unit mass. V = 1/p == specific volume. IR is external energy per unit mass
Using the continuity and Euler equations, the
energy equation can be written in the form

We note that $(E + \frac{\sqrt{2}}{2})$ is the total energy = thermal + zinotic

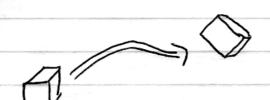
E = p(1/2+2) = total energy per unit Volume

For an adiabatic process we can use the equation of entropy conservation: d5 = 0,

where & is the specific entropy. This can be written in the form

Lagrangian approach to hydrody paris

=> follow unotion of a fluid element. Mass of tree



element is proserved, but its position in space and its volume change as the element moves

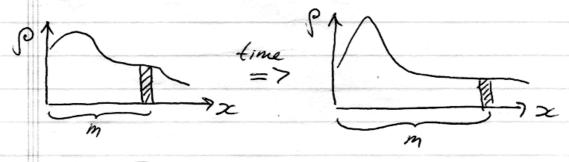
We must introduce a way to identify the element and to distinguish it from other elements. Let \(\tilde{q}\) be a labol ("coordinate"), which characterizes the element. There are different ways of choting \(\tilde{q}\). For example, \(\tilde{q}\) can be position of the element at some initial moment of time.

set of the fluid is described by the following

$$\rho = \rho(t, \vec{q}) = deu \vec{r} y$$
 $\vec{r} = \vec{s}(t, \vec{q}) = selacity$
 $\rho = \rho(t, \vec{q}) = pressure$

 $\vec{x} = \vec{x}(t, \vec{q}) = position in space$

camples: (I) Plane motion: there is only one coordinate &



mass (m) between (any) elements is preserved, but positions of the elements changes with time. We can use (m) as lagrangian coordinate 9.

For simplicity we assume that the first element

 $m(x) = \int p dx$, dm = p dx

Mass m is our independent variable.

The continuity equation in Enlivian coordinates is

of + div(pv)=0

We need to revise it so that time derivative is

d, not 2;

of + dis[ps] = of + rigradp+ pdiv= df+ pdiv=0

In 1D case this aquation takes form:

df + p 20 = 0

Now we need to change variables from x to u:

use dm = pdx. we get Continuity aguation in

lagrangian coordinates:

P2 de = - Do(m,t)

The equation of motion in lagrangian coordinates is
$$\frac{dV = -\nabla P - \nabla \varphi}{dt} = \frac{\nabla P}{\rho} = \frac{\nabla \varphi}{\partial t}$$
 Here we need to change $\frac{\partial}{\partial x}$ to $\frac{\partial}{\partial m}$;

$$\frac{1}{\rho} \frac{\partial \rho}{\partial x} = \frac{\partial \rho(m,t)}{\partial m}, \quad \frac{\partial \rho}{\partial x} = \frac{\partial \rho(m,t)}{\partial m}$$

Thus, the final form of the equation of motion in lagrangian coordinates takes the form

$$\left\{ \frac{dV}{dt} = -\frac{\partial P}{\partial m} - P \frac{\partial Q}{\partial m} \right\}$$

Energy equation
$$\frac{d\varepsilon}{dt} + p\frac{dV}{dt} = \frac{dQ}{dt}$$

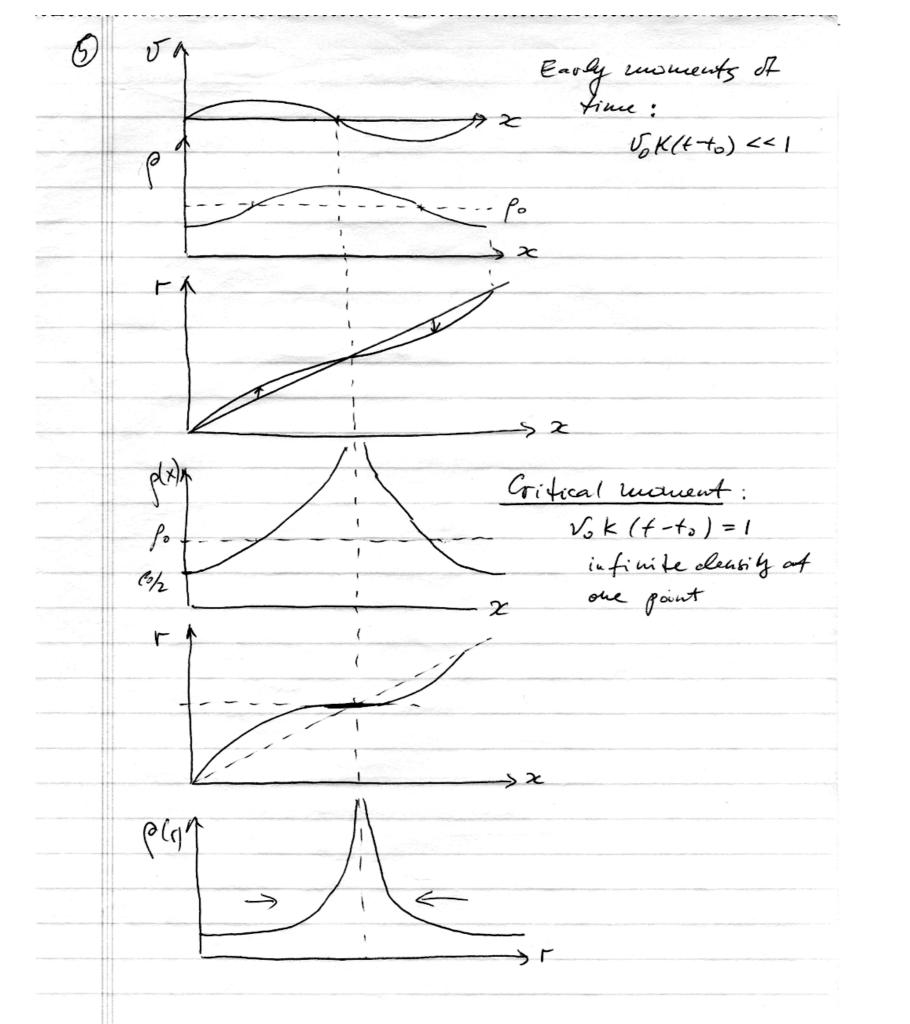
austher choice of coordinates: use initial coordinate 2 as the lagrangian coordinate; If Po (x) is the density distribution at initial moment, than wass conservition

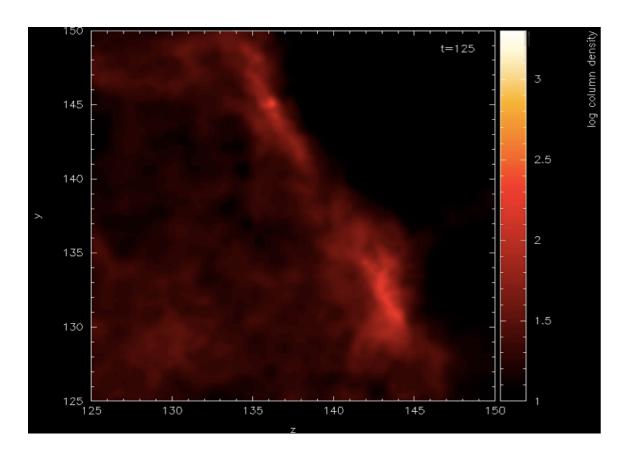
$$p_o dx = p(r,t) dr$$

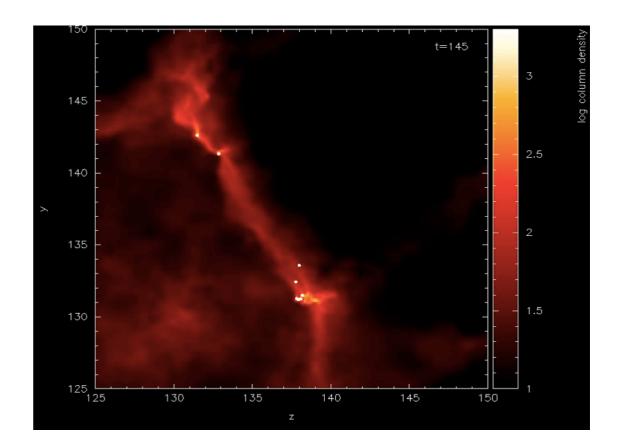
Equations of hydrodynamics are:

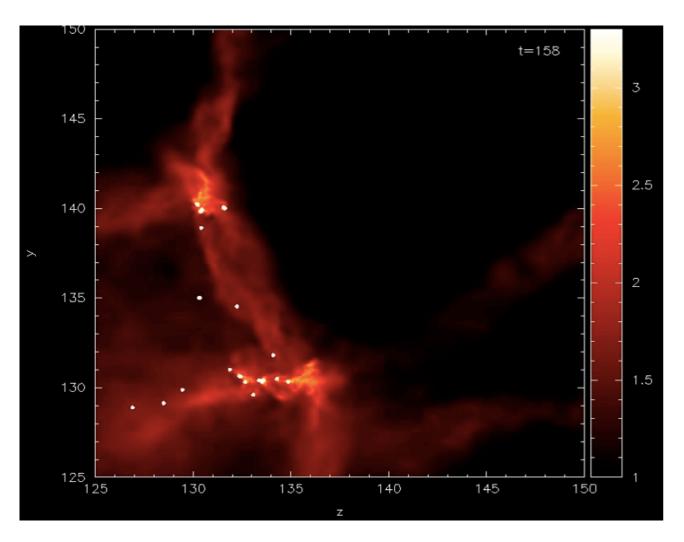
$$\begin{vmatrix} \frac{1}{\rho^2} \frac{d\rho}{dt} = -\frac{\partial V(t,z)}{\partial z} \frac{1}{\rho_0(z)} \\ \frac{dV(t,z)}{dt} = -\frac{1}{\rho} \frac{\partial \rho}{\partial z} - \frac{\rho(z,t)}{\rho_0(z)} \frac{\partial \rho}{\partial z} \end{vmatrix}$$

Example: motion of cold gas in one dimarian P=0, 4=0 Initial couditions: - V = Vo sin (KZ) Vo and k are existants - P=Po - initial density p=po=west How the gas flows at later times? $\frac{1}{\rho^2} \frac{d\rho}{dx} = -\frac{\partial V}{\rho_0} = -\frac{V_0}{\rho_0} k\cos(kx)$ The r.h.s. does not depend on time t. Pens, we can outegrate this equation Po g(x,t) = - Vo K cos(kx)(t-to) 1+ Vok (t-to)cos(KZ) tind relation between lagrangian coordinate 2 and aulivian coordinate r: From continuity equation $p(x,t)dr = p_0(x)dx = \frac{dr}{dx} = \frac{p_0}{p(x,t)}$ Integrate over x: r= x+ Vo (+-to) siz (K2)









Column density plot of Cloud 1 in the *y-z* plane at t = 19.1 Myr, integrating over the central 16 pc along the *x*-direction. The dots show the stellar objects (sink particles). The electronic version of this figure shows an <u>animation</u> of this region from t = 16.6 to 19.9 Myr. The column density is in code units, which correspond to 9.85×10^{19} cm⁻².

Model of star formation in Molecular clouds