Motion in a central force

Particle motion in a central force

- acceleration and potential for central force
- angular momentum
- equations for trajectories
- analysis

Definition: Force is central if it depends only radius-vector \vec{r}

$$
\vec{F}=\phi(r) \vec{r}
$$

Example: Newtomisa force: $\vec{F}=-G M m \frac{\vec{r}}{|r|^{3}}$

Gravitational potential $(\operatorname{\sigma }$ or $\varphi)$:
work done by the force on a particle to displace it from position 1 to position 2 :

If W_{12} does not depend on the path, the force is called conservative or potential. In this case W_{12} is the o same for any path joining points'/ and 2

Theorem: a central force is potential

$$
\vec{r} d \vec{s}=r d r
$$

whereat is the projection of d \vec{s} on \vec{r}

By definition $\vec{F}=\Phi(r) \vec{r}$
The work w_{12} can be written as

$$
w_{12}=\int_{1}^{2} \vec{F} d \vec{s}=\int_{1}^{2} \varphi(r) \vec{r} \cdot d \vec{s}=\int_{1}^{2} \varphi(r) r d r
$$

The last integral depends only on r_{1} and r_{2}, not on a particular pore joining 1 and 2. Thus, the force is potential.

We can define gravitation potential as the work done by the force to move a particle of unit mass from $\overrightarrow{\vec{y}}$ to infinity. This is convinient if the system is finite (does not extend to ∞)
(*) $\quad U(\vec{r})=\int_{\vec{r}}^{\infty} \vec{F} d \vec{r}=\int_{\vec{r}}^{\infty} F_{x} d x+F_{y} d y+F_{z} d z$
If we differentiate $(*)$ in regard to \vec{F}, we get inverse relation:
$(* *) \quad \vec{F}=-\operatorname{grad} U(r) \equiv-\vec{\nabla} U(r)$
In particular case of the central force $(* *)$ can be written as
(***) $\quad \vec{F}=-\frac{d \sigma(r)}{d r} \frac{\vec{r}}{|r|}$
For a particle of unit mass eq (t**) means that the trajectory of tom particle is
$(* * * *) \quad \ddot{\vec{r}} \equiv \frac{d^{2} \vec{r}}{d t^{2}}=-\frac{d v}{d r} \frac{\vec{r}}{|\vec{r}|}$
It is convenient to define $V(r)$ as work per chit mass. Then $(* * * *)$ is valid for any particle.

Specific angular momentum (angular momentum per unit mass) is defined as:

$$
\vec{M}=[\vec{r} \cdot \vec{V}]
$$

$\begin{array}{lll}\vec{c} & \vec{b} & \text { vector product: } \vec{c}=[\vec{a} \vec{b}\} \equiv \vec{a} \times \vec{b} \\ & \end{array}$

$$
\vec{c}=\operatorname{det}\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{x} & a_{y} & a_{z} \\
b_{y} & b_{y} & b_{z}
\end{array}\right|
$$

$|\vec{c}|=a b \sin \theta=$ Area of the parallelogram on the plot
For central force we can find that the derivative of angular momentum with time is:

$$
\dot{\ddot{M}}=\frac{d \dot{M}}{d t}=\frac{d}{d t}[\vec{r} \vec{v}]=\frac{d}{d t}\left[\begin{array}{ll}
\vec{r} & \dot{\vec{r}}
\end{array}\right]=[\dot{\vec{r}} \dot{\dot{r}}]+[\stackrel{\rightharpoonup}{r} \ddot{\vec{r}}]=0
$$

Thus, the angular momentum of a particle is conserved. Its trajectory is confined to the same plane: the one, which is orthogonal to vector M

We chose a reference frame, which $h_{a s} \vec{z}$-coupaient along \vec{M}. The trajectory will always stay in the plane Ky. We introduce polar coordinates in the plane. Let \vec{e}_{r} and \vec{e}_{y} be unit vectors along and perpendiak to the radius-vector \vec{r}. Y is the polar angle.

Radius-vector of the particle:

$$
\vec{r}=r \overrightarrow{e_{r}}
$$

(+)
Velocity of the particle:

$$
\dot{\vec{r}}=\dot{r} \vec{e}_{r}+r \dot{\varphi} \overrightarrow{e_{\varphi}}
$$

Angular momentum:

$$
\stackrel{\rightharpoonup}{M}=[\stackrel{\rightharpoonup}{r} \dot{\vec{r}}]=\left[\stackrel{\rightharpoonup}{r}, \dot{r} \vec{e}_{r}\right]+\left[\stackrel{\rightharpoonup}{r}, r \dot{\varphi} \vec{e}_{\varphi}\right]=r^{2} \dot{\varphi}\left[\stackrel{\rightharpoonup}{e_{r}} \vec{e}_{\varphi}\right]
$$

Thus,

$$
\vec{M}=r^{2} \dot{\varphi} \overrightarrow{e_{z}}=\text { const }
$$

and

$$
\| r^{2} \dot{\varphi}=\text { oust } \|
$$

Equation of motion of a particle in central force is:
(**)

$$
\ddot{F}=-\stackrel{\rightharpoonup}{\nabla} U(r)
$$

Differentiate eq (t) with time:

$$
\stackrel{\ddot{r}}{\vec{r}}=\ddot{r} \vec{e}_{\mu}+(\dot{r} \dot{\varphi}+r \ddot{\varphi}) \dot{e}_{\varphi}+r \dot{\varphi} \dot{\vec{\varphi}}_{\varphi}+\dot{r} \dot{\overrightarrow{e_{\mu}}}
$$

From geometry of the problem we find:

$$
\begin{aligned}
& \text { geometry of the problem we tin } \\
& \stackrel{\rightharpoonup}{e_{r}} \\
& \stackrel{\varphi}{e_{\varphi}}
\end{aligned}
$$

Thus, $\ddot{\vec{r}}=\left(\ddot{r}-r \dot{\varphi}^{2}\right) \vec{e}_{r}+(2 \dot{r} \dot{\varphi}+r \ddot{\varphi}) \vec{\varphi}$
For a citral force $\vec{\nabla} U=\frac{d U}{d r} \vec{e}_{r}$. Eg $(* *)$ now an be written as two equations: one for each component/ ir ore θ)

$$
\begin{cases}2 \dot{r} \dot{\varphi}+r \ddot{\varphi}=0 \\ \ddot{r}-r \dot{\varphi}^{2}=-\frac{d u}{d r}\end{cases}
$$

Conservation of angular momentum follows from (φ) equation

$$
\begin{aligned}
& 2 \dot{r} \dot{\varphi}+r \ddot{\varphi}=\left(\dot{\varphi} r^{2}\right)^{\dot{ }}=0 \Rightarrow \dot{\varphi} r^{2}=\text { court } \\
\Rightarrow & \dot{\varphi}=\frac{M}{r^{2}}
\end{aligned}
$$

We substitute this equation into the (r) equation and get:

$$
\ddot{r}=-\frac{d U}{d r}+\frac{r M^{2}}{r^{4}}=-\frac{d}{d r}\left[U+\frac{M^{2}}{2 r^{2}}\right]
$$

Definition:

$$
v_{\text {eff }} \equiv U(r)+\frac{M^{2}}{2 r^{2}}=\text { Effective Potential }
$$

Now the second equation of motion can be written as:

$$
\ddot{r}=-\frac{d V_{\text {eff }}}{d r}
$$

Equation for radial motion

$$
\ddot{r}=-\frac{d v_{e f f}}{d r} \quad(t)
$$, can be integrated once. Multiply $(*)$ by \dot{r}. A ten ep hand-side we get $\dot{r} \ddot{r}=\frac{1}{2}(\dot{r} z)^{\text {. }}$.

Wee riglatthand-side is $\frac{-d \text { Nf }_{f}}{d r} \frac{d r}{d t}=-\frac{d U_{\text {eff }}}{d t}=-\dot{U}_{f f}$ Note, that this is True only is Of does not depend on time explicitly. Thus, y (*) can be written in the form

$$
\frac{d}{d t}\left(\frac{\dot{r}^{2}}{2}\right)=-\frac{d U e l f}{d t}
$$

This can be integrated:

$$
(* *) \quad \frac{\dot{r}^{2}}{2}+v_{\text {eff }}=E \text {, where } E \text { is a constant of }
$$

The constant E is the total energy per unit mass of the particle:

$$
\begin{aligned}
E=\frac{\dot{r}^{2}}{2}+v(r)+\frac{m^{2}}{2 r^{2}}= & \frac{\dot{r}^{2}}{2}+\frac{v_{1}^{2}}{2}+v(r) \text {, where } \\
& v_{\perp}=\frac{M}{r}=\text { tangential velocity }
\end{aligned}
$$

Trajectory of a particle moving in central force

$$
\begin{equation*}
\frac{\dot{r}^{2}}{2}+V_{\text {eff }}(r)=E \Rightarrow \frac{d r}{d t}= \pm \sqrt{2\left(E-\sigma_{\text {eff }}(r)\right)} \tag{x}
\end{equation*}
$$

This can be written in integral form:

$$
\int_{t_{0}}^{t} d t= \pm \int_{r_{0}}^{r} \frac{d r}{\sqrt{2\left(E-\sigma_{f f}(r)\right)}} \text {, where }
$$

t_{0} and r_{0} are initial moment and initial radius
If we choose $t_{0}=0$ when the trajectory has miniumin radius,

$$
\left\|t=\int_{r_{0}}^{r} \frac{d r}{\sqrt{2\left(E-v_{\text {eff }}\right)}}\right\|
$$

This equation defines dependence of radius on time. The angle φ ala be found from conservation of angular momentum:

$$
\begin{aligned}
& \frac{d \varphi}{d t}=\frac{M}{r^{2}} \Rightarrow \begin{array}{l}
\text { from eq (t) } \\
d t=\frac{d r}{\sqrt{2\left(E-v_{e f f}\right)}}
\end{array} \Rightarrow \\
& \Rightarrow \frac{d \varphi}{d r}= \pm \frac{M}{r^{2}} \frac{1}{\sqrt{2\left(E-l_{e f f}\right)}} \\
& \left\|\varphi-\varphi_{0}= \pm \int_{r_{0}}^{r} \frac{M}{r^{2}} \frac{d r}{\sqrt{2\left(E-v_{f f}(r)\right.}}\right\|
\end{aligned}
$$

This is the second equation for the trajectory. It defines φ as a function of radius r

Analysis Energy E and angular momentum L are defined by initial conditions
at initial moment $t=t_{0}$ we have $r_{0}, \varphi_{0}, V_{0}, V_{1,0}$

$$
E=\frac{v_{F}^{2},+\frac{v_{1,0}^{2}}{2}+v\left(r_{0}\right) ; M=v_{1,0} \cdot r_{0} .}{}
$$

Initial conditions also define plane of the orbit

$$
\sigma_{e f f}(r)=v(r)+\frac{\mu^{2}}{2 r^{2}}
$$

Trajectories in the phase-space

Trajectory always stays between $r_{\text {min }}$ and $T_{\text {max }}$ The radial period of tu motion is equal to

$$
T_{r}=2 \int_{\min }^{r_{\min } x} \frac{d r}{\sqrt{2\left(E-v_{(f f}(r)\right)}}
$$

Daring one period the apocenter drifts by angle

$$
\Delta \varphi=2 \int_{r_{\text {mix }}}^{r_{\text {max }}} \frac{\mu}{r^{2}} \frac{d r}{\sqrt{2\left(E-v_{\text {eff }}\right)}}
$$

Trajectory is closed if $\Delta \varphi=2 \bar{n} \frac{m}{n}$, where m and n are integer numbers orbits are closed only in two cases:

$$
v(r)=\frac{A}{r} \text { and } U(r)=A r^{2}
$$

If a trajectory is not close, it covers easily a le the space between $r_{\text {min }}$ and $r_{\text {max }}$

Orbits gradually fill all allowed space densely: epsilon region around any point will be visited by the trajectory

