Boltzman Equation: II

Masses of spherical systems: application of Jeans equations
System to study : stationary spherically symmetric
spherial symmery $\Rightarrow \frac{\partial}{\partial \varphi}=0, \frac{\partial \cdots}{\partial \theta}=0$
(-trio stationary system $\Rightarrow \frac{\partial \cdots}{\partial t}=0$
because of the symmetry bulk velocities are equal to zero: $\left\langle v_{\varphi}\right\rangle=\left\langle v_{\theta}\right\rangle=\left\langle v_{r}\right\rangle=0$
Continuity equation $\frac{\partial n}{\partial t}+\nabla(n \sqrt{5})=0$ is satisfied.
The Euler equation gives only one equation:
(*) $\quad \frac{\partial}{\partial r}\left(n \bar{v}_{r}^{2}\right)+\frac{n}{r}\left[2 \overline{v_{r}^{2}}-\left(\overline{v_{\theta}^{2}}+\overline{\varphi_{\varphi}^{2}}\right]=-n \partial \varphi\right.$, where φ is grov. potential and $\overline{v_{i}^{2}}$ are velocity dispersions. Because of the spherical symmetry:

$$
\left\langle v_{i}^{2}\right\rangle \equiv \overline{v_{i}^{2}}
$$

$$
\left\langle v_{\theta}^{2}\right\rangle=\left\langle v_{\rho}^{2}\right\rangle
$$

We introduce velocity anisotropy $\beta(r) \equiv 1-\frac{\left\langle v_{\theta}^{2}\right\rangle}{\left\langle v_{r}^{2}\right\rangle}$
Eq(*) can be rewritten in the form:

$$
\frac{1}{n} \frac{\partial}{\partial r}\left(n \overline{v_{r}^{2}}\right)+\frac{2 \beta v_{r}^{2}}{r}=-\frac{G M(r)}{r^{2}}
$$

By rearranging terms:

$$
M(r)=-\frac{r \overline{v_{r}^{2}}}{\epsilon}\left[\frac{\partial \ln n}{\partial \ln r}+\frac{\partial \ln \bar{v}_{r}^{2}}{\partial \ln r}+2 \beta\right]
$$

This equation can be used to determine mass of spherical systems. It has three quantities, which can be estimated using observational properties of astronomical systems
$n(r) \rightarrow$ reconstructed from surface densify of objects $Z(r)$
$v_{r}^{2} \rightarrow$ from line-of-sight rms velocities $\beta \rightarrow$ from distribution of $1-0-9$ velocities

Asymmetric drift: Rotation of a thin stellar dirk
stars rotate around center with velocity \bar{v}. They also have sural clastic velocities $\overline{v_{R}^{2}}, \overline{v_{\varphi}^{2}}$, and $\overline{v_{R}^{2}}$
In cylindrical coordinates one of Jeans' equations can be writers es:
(*)

$$
\frac{\partial}{\partial t}\left(n \bar{v}_{R}\right)+\frac{\partial\left(n \overline{v_{R}^{2}}\right)}{\partial R}+\frac{\partial\left(n \overline{v_{R}} \bar{v}_{z}\right)}{\partial z}+n\left(\frac{\sqrt{\sqrt{2}_{2}^{2}}-\sqrt{V_{\varphi}^{2}}}{R}+\frac{\partial \varphi}{\partial R}\right)=0
$$

Here terms live: $\overline{v_{R} v_{z}}=\frac{1}{n} \iiint d^{3} \sqrt{ } 7 \cdot v_{R} v_{z}$ Note that there is difference between $\frac{\nu_{p}^{2}}{\nu_{p}} \overline{\nu_{\varphi}^{2}}$:

$$
\begin{aligned}
\sigma_{\varphi}^{2}=\overline{\left(v_{\varphi}-\bar{v}_{\varphi}\right)^{2}} & =\overline{v_{\varphi}^{2}}-\bar{v}_{\varphi}^{2} \\
& \sigma_{\varphi}^{2}
\end{aligned}=\text { azimuthal velocity dispersion }
$$

For a stationery system and close to the galactic plane $\frac{\partial .}{\partial t}=0 \quad \frac{\partial n}{\partial z} \cong 0$, we have $(*)$
(**) $\left.\quad \frac{R}{n} \frac{\partial(n \sqrt{R}}{\partial R}\right)+R \frac{\partial\left(\overline{\sqrt{R}} \frac{v_{z}}{\partial 2}\right.}{\partial R}+\overline{v_{R}^{2}}-\overline{v_{\varphi}^{2}}+R \frac{\partial \varphi}{\partial R}=0$
Term $\frac{\partial \overline{v_{R} v_{z}}}{\partial z}$ is small and we neglect it.

$$
R \frac{\partial \varphi}{\partial R}=V_{c}^{2}=(\text { circular velocity })^{2}
$$

$\mathrm{Eg}(*+)$ tabes form

$$
\frac{v_{\varphi}^{2}}{v_{\varphi}}=v_{c}^{2}+v_{R}^{2}-\sigma_{\varphi}^{2}+\frac{R}{n} \frac{\partial\left(n v_{R}^{2}\right)}{\partial R}
$$

For solar neighborhood V_{R}^{2} is slightly larger than σ_{φ}^{2}, but the difference is not large. The main effect is related with the derivative of "pressure" $\frac{\partial}{\partial R}\left(n \nu_{R}^{2}\right)$. Because $n \nu_{R}^{2}$ dedines with increasing radius this derivative is negative and $\overline{\sqrt{\varphi}}^{2}<\gamma_{c}^{2}$.

Tuns, disk rotates slower than $V_{c}^{2} \simeq \frac{G H(N)}{R}$ The larger V_{R}^{2}, the stranger is the effect. For an exponential dist with constant hight

$$
\begin{aligned}
& n\left(R_{1} z=0\right)=n_{0} e^{-R / r_{d}} ; \sigma_{z}^{2}=\pi G z_{0} \Sigma(r) \\
& \overline{V_{R}^{2}}=V_{0}^{2} e^{-R / r_{d}} ; \sigma_{\varphi}^{2} \simeq 0.45 \overline{v_{R}^{2}} \\
& \frac{2}{v_{\varphi}}=v_{c}^{2}-\sigma_{\varphi}^{2}+\bar{v}_{R}^{2}-\frac{2 R}{r_{d}} \bar{v}_{R}^{2}
\end{aligned}
$$

