Boltzman Equation: I

Boltzman equation
Distribution function: position of each particle in phase-space is charnaterized by 6 mubers.

$$
x, y, z, v_{x}, v_{y}, v_{z} \equiv(\vec{x}, \vec{v})
$$

In G-dimentional (x, v) space each object io just a point. For that point \vec{x} and \vec{r} are independent variables. Thus, \vec{x} does not degreid on \vec{v} and \vec{v} does not depend on \vec{x}.
1-point distribution function, or simply $D F$ is defined is a number of of objects in a unit element of the phase--space:

$$
\begin{array}{ll}
\delta N=f(\vec{x}, \vec{v}, t) \delta \vec{x} \delta \vec{v} ; & \delta \vec{x}=d x d y d z \\
& \delta \vec{v}=d v_{x} d y, d v z
\end{array}
$$

DP $f(\vec{x}, \vec{v}, t)$ defines other /usual) properties of the system. mean density $n(\vec{x})$ and mean (bulk) velocity $\langle\vec{v}\rangle$ are fined is:

$$
\begin{aligned}
& n(\vec{x})=\int_{-\infty}^{\infty} w_{x}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{z}^{\infty} f(\vec{x}, \vec{v}, t) \equiv \int d \vec{v} f(\vec{x}, \vec{v}, t), \\
& \langle\vec{v}(\vec{x})\rangle=\frac{1}{n(\vec{x})} \int f(\vec{x}, \vec{v}, \vec{t}) \vec{v} d \vec{v}
\end{aligned}
$$

re can define velocity dispersion (analog of pressure in faucal):

$$
\begin{aligned}
n(\vec{x}) G_{i j}^{2} & =n(\vec{x})\left\langle\left(v_{i}-\left\langle v_{i}\right\rangle\right)\left(v_{j}-\left\langle v_{j}\right\rangle\right)\right\rangle= \\
& =n(\vec{x})\left(\left\langle v_{i} v_{j}\right\rangle-\left\langle v_{i}\right\rangle\left\langle v_{j}\right\rangle\right) \text {, where } \\
\left\langle v_{i} v_{j}\right\rangle & \equiv \frac{1}{n(\vec{x})} \int v_{i} v_{j} f(\vec{x}, \vec{v}, t) d \vec{v}
\end{aligned}
$$

1. Derivation of the Boltzman Equation

We describe position of an object in the 6 dimensional phase-space using a vector:

$$
\begin{equation*}
\vec{w}=(\vec{x}, \vec{v}) . \tag{1}
\end{equation*}
$$

Velocity, with which the object moves in the 6D space, is:

$$
\begin{equation*}
\dot{\vec{w}}=(\dot{\vec{x}}, \dot{\vec{v}})=(\vec{v},-\vec{\nabla} \phi) . \tag{2}
\end{equation*}
$$

The distribution of objects is the phase-space is described by the phase-space density $f(\vec{w}, t)$. Consider a small 6-d cubic volume in the phase-space. The volume of the cube is

$$
\begin{equation*}
\Delta V=\Delta x \Delta y \Delta z \Delta v_{x} \Delta v_{y} \Delta v_{z} \tag{3}
\end{equation*}
$$

The question is how to find the change in mass $\Delta m=\Delta f \Delta V$ of the volume in a Δt time interval. The mass will change because our "fluid" moves through the box: some mass moves in and some mass leaves the volume. Let's count amount of mass, which moves through opposite phases of the box. The box has 6 pairs of phases: 3 in real space and 3 in velocity space. The total change on mass will be the sum of the 6 contributions. The first pair is in the x-direction:

$$
\begin{align*}
\Delta m & =-\left[\left.\left(f v_{x}\right)\right|_{x+\Delta x}-\left.\left(f v_{x}\right)\right|_{x}\right] \Delta t \Delta S \tag{4}\\
\Delta S & =\Delta y \Delta z \Delta v_{x} \Delta v_{y} \Delta v_{z} \tag{5}
\end{align*}
$$

Expand in Taylor series:

$$
\begin{equation*}
\Delta m=-\frac{\Delta\left(f v_{x}\right)}{\Delta x} \Delta t \Delta x \Delta S \tag{6}
\end{equation*}
$$

Now we do the same for all the phases:

$$
\begin{equation*}
\frac{\Delta f}{\Delta t} \Delta V=-\left[\frac{\Delta\left(f v_{x}\right)}{\Delta x}+\frac{\Delta\left(f v_{y}\right)}{\Delta y}+\frac{\Delta\left(f v_{z}\right)}{\Delta z}+\frac{\Delta\left(f \dot{v}_{x}\right)}{\Delta v_{x}}+\frac{\Delta\left(f \dot{v}_{y}\right)}{\Delta v_{y}}+\frac{\Delta\left(f \dot{v}_{z}\right)}{\Delta v_{z}}\right] \Delta V \tag{7}
\end{equation*}
$$

Canceling ΔV and taking the limit of small time and distance intervals, we get:

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\operatorname{div}_{6 D}(f \dot{\vec{w}})=0 \tag{8}
\end{equation*}
$$

Boltzman equation is derived under condition that no particle can jump in the phase-spece. Particles can duly smoothly (continuously) move from one peace to another. Thus, the Baltzman equation is just continuing equation of the flow of particles in the phase-space. It can be written in a form:

$$
\frac{\partial f}{\partial t}+\operatorname{div}_{6 D}(f \dot{f})=0
$$

Here div - is the divergence of vedor field $f \dot{\vec{w}}$ in 6D space ${ }^{6 D}(\vec{x}, \vec{v})$:

$$
\begin{aligned}
\frac{\partial f}{\partial t} & +\frac{\partial}{\partial x}\left(f v_{x}\right)+\frac{\partial}{\partial y} \cdots+\frac{\partial}{\partial z} \cdots+ \\
& +\frac{\partial}{\partial v_{x}}\left(f v_{x}\right)+\frac{\partial}{\partial v_{y}} \cdots+\frac{\partial}{\partial v_{z}} \cdots=0
\end{aligned}
$$

when we unroll tue derivatives, half of terms vile be equal to zero: $\frac{\partial v_{i}}{\partial x_{i}}=0 \leftarrow$ because v_{i} and $x_{\text {i }}$ are independent

$$
\frac{\partial \dot{v_{x}}}{\partial v_{x}}=-\frac{\partial}{\partial v_{x}}\left(\frac{\partial \varphi}{\partial x}\right)=0 \Leftarrow \text { because grab. potential } \varphi
$$

Thus, combining in rest of the terms, we get

$$
\frac{\partial f}{\partial t}+\left(\dot{\vec{w}} \nabla_{\sigma D}\right) f=0 \Rightarrow \frac{\partial f}{\partial t}+(\vec{v} \vec{\nabla}) f-\left(\vec{\nabla} \varphi \vec{v}_{v}\right) f=0
$$

This is nothing, but a short-cut for

$$
\left\|\frac{\partial f}{\partial t}+v_{x} \frac{\partial f}{\partial x}+v_{y} \frac{\partial f}{\partial y}+v_{z} \frac{\partial f}{\partial z}+g_{x} \frac{\partial f}{\partial v_{x}}+g_{y} \frac{\partial f}{\partial v_{y}}+g_{z} \frac{\partial f}{\partial v_{z}}=0\right\|
$$

Real Boltzman equation has a collisional integral in the right-hand side, which estimates the rate of change of XF due to head-on collisions of atoms in deleted gas. We do not have this term because we assume that there are no collisions between particles.
In plasma and gas physics there is another name associated with this equation: veasor equation.

- There are severe limitations on astronomical applications of BE. because of the way how. we defined f and how derived the equation. It implies that there is a small elementary volume of 60 space such that there are (always) many partides inside it AND the distribution function does not change much across the volume. Only in this case we can differentiate $f(\vec{x}, \vec{v})$. In astronong, this never happens: gradients are typically very lame.
- There are two ways to avoid the problem
a) treat f as a probability density: probability to find an object in a smatle 60 volume element is $d P=f d \vec{x} d \vec{V}$
b) treat the system as a Hamiltonian flow. In this case we even do not need to hare a single real object in space. We just study properties of the Hamiltonian flow.

Liouville the orem: Havilotomian phase flow preserves volume in the phase-space

This means that we can define thee distribution function of at a position of individual sear!
characteristic equations
The Boltzman equation is the first -order partial differential equation. It is a linear equation. This means that if f_{1} and f_{2} are two solletrous of the equation, then $\alpha_{1}+\beta f_{2}$ is also a solution, where α and β are arbitrary miners.

Solution of BE. can be given in terms of charackeritic equations:

$$
d t=\frac{d x}{v_{x}}=\frac{d y}{v_{y}}=\frac{d z}{v_{z}}=\frac{d v_{x}}{\left(-\frac{\partial \varphi}{\partial x}\right)}=\frac{d v_{y}}{\left(-\frac{\partial \varphi}{\partial y}\right)}=\frac{d v_{z}}{\left(-\frac{\partial \varphi}{\partial z}\right)}
$$

There are 6 differential equations here ($e g, \frac{d x}{d t}=v_{x}, \frac{d x}{d x}=g_{t}$), whide define a curve ("characteristic") in 6D space. The distribution function f is constant along each curve (but different for differcat curves). The set of all possible characteristics defines the solution of B.E.

DF is an integral(isolating) f motion.
characteristic equations look like equations of motion of a partide:

$$
\frac{d \vec{x}}{d t}=\vec{v}, \quad \frac{d \vec{v}}{d t}=-\frac{\partial \varphi}{\partial \vec{x}}
$$

note that while each particle trajectory is a daracteFistic, opposite is nut true. Characteristics cover the whole space.

Applications of the Boltzman equation in astronomy are often related with its derivative - Jeans equations.
-Jeans equations / moment equations / stellar-hydrodyarmics
Boltzmann equation: $\frac{\partial f}{\partial t}+(\vec{v} \vec{\nabla}) f+\left(\vec{g} \vec{v}_{v}\right) f=0$
This means that $\frac{\partial f}{\partial t}+\sum_{i=1}^{3}\left\{v_{i} \frac{\partial f}{\partial x_{i}}-\frac{\partial \varphi}{\partial x_{i}}, \frac{\partial f}{\partial v_{i}}\right\}=0 \quad$ (*)
Integrate $o(t)$ over velocities at given position \vec{x} :

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d r_{x} d \operatorname{dyd} d z\{B \cdot E\}=0
$$

Consider the three terms in ($($) in turn:
(I)

$$
\int \frac{d^{3}}{\partial t} \frac{\partial f}{\partial t}=\frac{\partial}{\partial t} \int d^{3} v f(\vec{x}, \vec{v}, t)=\frac{\partial}{\partial t} n(\vec{x}, t)
$$

(iii) $\int d^{3} v \sum_{i=1}^{3} v_{i} \frac{\partial f}{\partial z_{i}}=\sum_{i=1}^{3} \int d^{3} v \cdot v_{i} \frac{\partial f}{\partial x_{i}}=\sum_{i=1}^{3} \frac{\partial}{\partial x_{i}} \int d^{3} v v_{i} f(\vec{i}, \vec{v},+)$ but $n\left\langle v_{i}\right\rangle \equiv \int \sigma_{i} f d^{3} v$, thus $(4)=\sum_{1}^{3} \frac{\partial}{\partial x}\left[n\left\langle v_{i}\right\rangle\right]=d v(n\langle\vec{v}\rangle)$
(III) $\sum_{i=1}^{3} \frac{\partial \varphi}{\partial x_{i}} \int \frac{\partial f}{\partial v_{i}} d^{3} v \sum_{i=1}^{3} \frac{\partial \varphi}{\partial x_{i}} \int d v_{y} \int d v_{z} \int d v_{x} \frac{\partial f}{\partial v_{i}}$

Here each of the three terms has an in tegrae of the form

$$
\int_{-\infty}^{\infty} d v_{i} \frac{\partial f}{\partial v_{i}}=\left.f\right|_{v_{i}=-\infty} ^{v_{i}=+\infty}=0
$$

The integrals are equal to zero because there are no particles moving with infinite velocity Tums (III) $=0$

Combining I, II, and III, we get

$$
\frac{\partial n}{\partial t}+\operatorname{div}(n\langle\vec{v}\rangle)=0 \quad \text { Contimerity equation }
$$

This equation can be considered is equation for density $n(\vec{x})$. It r sounded because we can mot find the mean ($=$ bulk $=$ streaming) velocity $\langle\vec{V}\rangle$ from this equation. Thus, we need to have another equation-- equation for $\langle\vec{v}\rangle$.
"Euler equation" is obtained by multiplying B.E. by velocity V_{j} and by integrating the product over all velocities at given coordinate x

$$
\int d^{3} v \cdot V \cdot\{B \cdot E \cdot\}=0
$$

After some manipulations, we arrive to equation:

$$
\frac{\partial\left\langle v_{i j}\right\rangle}{\partial t}+\sum_{i=1}^{3}\left\langle v_{i}\right\rangle \frac{\partial}{\partial x_{i}}\left\langle v_{j}\right\rangle=-\frac{\partial \varphi}{\partial x_{i}}-\frac{1}{n} \sum_{i=1}^{3} \frac{\partial}{\partial \xi_{i}}\left(n \sigma_{i j}^{2}\right)
$$

Here tensor $\sigma_{i j}^{2}$ was defined earlier as:

$$
\int v_{i} v_{i} \cdot f d^{3} v=n \sigma_{i j}^{2}+n\left\langle v_{i}\right\rangle\left\langle v_{i}\right\rangle
$$

In vector form the euler equation looks a bit better:

$$
\frac{\partial\langle\vec{v}\rangle}{\partial t}+(\langle\vec{v}\rangle \vec{\nabla})\langle\vec{v}\rangle=-\vec{\nabla} \varphi-\frac{1}{n} \vec{\nabla}\left(n \vec{\sigma}^{2}\right)
$$

This equation can be considered as equation for $\langle\vec{v}\rangle$. It can not be solved because we need to know how to find $\sigma_{i j}{ }^{2}$, which is not defined by this equation. we can proceed further by multiplying BE by higher moments of r 's, and integrating it over velocities. This produces a hierardy of equations, which is equivalent to the Boltzman equation. The hierardy can be truncated at some stage by assuming some properties of high moments of velocities. In fluid dynamics we assume that the pressure is iso tropic:

$$
\sigma_{i j}^{2}=\sigma^{2} \delta_{i j} \quad \sigma_{i j}^{2}=\left(\begin{array}{cc}
\sigma^{2} & 0 \\
0 & \sigma^{2} \\
0 & \sigma^{2}
\end{array}\right)
$$

Then the last term in the Euler equation is a gradient of pressure. If m is the neean mass of particles and
then

$$
\rho=n \cdot m \text { is the density, }
$$

$$
P=n \cdot m \sigma^{2}
$$

The Euler equation is written in the form $(\vec{\rightharpoonup} \equiv\langle\vec{v}\rangle)$

$$
\frac{\partial \vec{v}}{\partial t}+(\vec{v} \nabla) \vec{v}=-\vec{\nabla} \varphi-\frac{1}{\rho} \vec{\nabla} p
$$

