Particle Motion in axisymmetric
gravitation potential



Orbits of stars in axisymmetric potentials

=> ?ﬁ¢ﬁ‘005 of ctextioN

—_ Zelro-ve (ac.'g cee Ve

—— 73 4 Of'b"‘s
-—étr—facg_s oL Sechion

= E"o.-aa., c/e e.rfroxi/nm‘z'ou

Equations of motion and effective potential

Sygfew To sv‘«ogﬁ Eravilatona! poteutral UUF)
d r 4

Z A doey teot ge“/ oH dd;/e_ P @~ <
20 - & S'dqhh-y/rz'c. reletive T ﬁa_lpfméz=o
z Y
N { > gi . ] 2
i e Equations of motion are: S’—-"-_: = VUR2)

——l

Z.. ausl 6:; ate 't YesHors 4/.,?} L avef 2 axegs
Dactites~ yechor o a ’pa—v‘r’o& cws be nttesa ag

F:: R.é,;"' Z‘é; ( o q:j caayam/j
Kractieat JE ;/orce )
( ;c) v = ‘2_..05:4- DC/Z

PR P2 T

45 éé/vrd; we Jafe . a = };e(w ,:. z:_?;ﬁ_. —%A::o
Differautriate e’?/';k) Cavce w'll +iae

T‘=\= éé:"' EQ-PEQ%—;

F=B&rigrlpd +REG REGr RIS

Mow, collec Tl Yurms anl splif Ll epwatioss of woton
iuto olifterv;t cot«’agmﬁ;. We ,9)27‘ Zurez ‘;/4"74'003




Q"Riﬂ :-’a"_{
RIP: E?.—O
| E. =27

Tle seeote! efacﬁolf 4 <« 74.// sLeri'vate :

f&@*@—%—i—z?zﬁf- e=r P

”Z«s means Ut 2- whfmaf 42&( an;a/c»- tcotortely o4

W‘(SW&( We have aa/, buwo .qm,l,“,g /e dt.

Effectlve potential is mtroduced as:

H{/p 2= U/R)+- “2

1/?"-

We can re-write the equations of motion in the following way
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Because the effective potential does not explicitly depend

on time, the energy of each particle E is preserved

=-'i/2+é )+ Uopy (B2) = <onst

This sefives Pero- Velocity curve (B=2=0).:
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Particle Motion in non-axisymmetric gravitation potential

Stationary nondissipative systems

Examples:
resonances in barred galaxies,
planetary resonances

Example of scattering resonances: asteroid belt
Example of trapping resonances:
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Barred galaxies can not be modeled as nearly axisymmetric systems because the dynamics of these galaxies is
dominated by a strong bar which rotates around the center.

The bar interacts with galactic material and distorts galactic orbits. In particular, some galactic orbits experience
dynamical resonances with the bar.

The motion in these orbits is coupled with the rotation of the bar: resonant orbits are closed orbits in the reference
frame which rotates with the bar. In this frame, the bar is stationary and a resonant orbit can periodically reach the same

position with respect to the bar.




: . Barred Galaxies: examples
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What resonances do and what they do not
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Simple expectations
W=, =H y = dTsinwl
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Perturbation expansion

This is valid only in |-dimensional case: not
true in 2- or 3-dimensions




frame which rotates with the bar. In this frame, the bar is stationary and a resonant orbit can periodically reach the same
position with respect to the bar. A resonant orbit is therefore a periodic orbit in this reference frame and its dynamical
frequencies are commensurable.

In general, these oscillations could be described by three instantaneous orbital frequencies:

- radial frequency «,
- vertical frequency v
- angular frequency 2.
The angular frequency of the rotation of the bar is 2B

relationship of commensurability: We mostly will be interested in cases with motion close to the galactic plane:
So, the resonant condition is reduced to

I +m(Q-LB)=0

Name I m n Q_KQB
CR 0 1 0 0
CR = corotation resonance (angular orbital frequency is equal to
frequency of the bar; analog of Trojan asteroids in the solar system) ILR -1 : 0 0.5
ILR = inner Lindblad resonance (orbits inside co-rotation radius, OLR | 2 0 -0.5
for every orbital period there are two radial periods) UHR -1 4 0 -0.25

OLR = outer Lindblad resonance (orbits outside co-rotation radius)



mSL_+ n_Q.?+ k= ?Qb

qr

T heorem: orbits on exact resonances do not experience any net torque or net change

of energy

anything interesting
happen close to a
resonance!

Orbits around corotation resonances.
Frame rotates with the bar.

Exact resonances are Lagrange point??
All other orbits oscillate along radius
(fast) and librate (slow) in tangential
direction.

No net change in energy of
ang.momentum once averaged over an
orbit or over a mixed population of
orbits
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Figure 22. Bottom: Distribution of the ratio (2 — Qp)/k for
particles in the halo chosen to stay close to the disk of model
1. The lines present different resonances. The corotation and the
inner Linblad resonances are clearly present in the halo. Top: the
same for the disk of model 1. The errorbars in both plots are the
lo error using poison noise.
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Resonances: few notions

S~ ) y 1. &— orbital frequencies

S bar frequency

here m, ’)‘k‘ -mo(?, are ;’m'tejp.o; -‘&

Elliptical Resonance: closed orbit in
phase-space

Separatrix or

Hyperbilic Resonance homoclinic orbit

Chaotic orbits.
Each orbit covers
densly the whole
region. It takes inft
time to do it.

Regular orbits in a domain of this prime resonance. \f
Averaged over time frequencies of these orbits are X
the same as the frequency of the resonance

\ Transition between region of a resonance
and domain of chaotic orbits. Secondary
resonances get bigger. Areas of chaotic
orbits appear between regular orbits.




An example of surface of section in
a realistic gravitational potential of
disk+halo+bar system.All orbits

are in the plane of the disk.The bar
rotates with a constant pattern 1
speed and the reference frame is
chosen to rotate together with the -

bar.

All orbits were selected to have i
the same energy.They have
different initial coordinates.When i
an orbit crosses y=0 plane, its
(x,Vx) coordinates are recorded if S 0k il
its Vy>0.After a long period of A\
time all recorded pairs of point !
(x,Vx) are plotted.

Types of orbits:
- resonant or closed orbits are those,
which cross the ‘bulls eyes’: centers of
ellipses in the plot or at intersections 1k
of separatrixes
- regular orbits, which produce closed
loops on the plot
- irregular orbits, which populate grey

regions




Two types of resonant orbits

Hyperbolic resonant
orbit: it is an unstable
point

0.5

Elliptical resonant orbit:
it is a stable point

-0.5

Close look at the domain of large
resonant orbits. Note the shape of
orbits, which separate the resonant

domains.Those orbits arecay_

‘separatrixes’ e

-0.6
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High-order resonances

Zoome-in on the region of
transition from a domain

of regular orbits to

lar (or chaotic)

irregu
orbits




